
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 10 | NCCOTII 2014 | Jun-2014, Available @ http://www.ijret.org 53

ANALYSIS OF ROUCAIROL AND CARVALHO APPROACH IN

DISTRIBUTED MUTUAL EXCLUSION

Rajeev Ranjan Kumar Tripathi
1

1
Department of CSE, Institute of Technology and Management, GIDA, Gorakhpur

Abstract
Critical section problem is a well known problem in Computer Science. It arises when multiple processes or threads

simultaneously try to access shared resources like physical devices or logical objects. In Conventional Operating System Design,

we use semaphores to solve this one. In Distributed System due to absence of shared memory we cannot implement the same

solution. Various approaches are given to solve the critical section problem in Distributed System. An algorithm that solves

critical section problem should have following properties like fairness along with deadlock freedom, freedom from starvation and

fault tolerant. Ricart and Agrawala suggested message based approach to get mutual exclusion in Distributed System. This

approach fairly deals with the critical section problem. Roucairol and Carvalho suggested an optimization for the given

approach. This paper is shedding lights on the proposed optimization. This paper finally concludes that though the optimization

has a better performance over the original one yet this one is compromising with the fairness.

Keywords— Critical Section, Distributed System, Fairness, Deadlock, Starvation, Fault Tolerance.

--***---

1. INTRODUCTION

Distributed System is a collection of inter connected nodes

that work together to get a specific goal. Each node has some

pre defined roles. Nodes communicate with each other only

by message passing. Distributed System has inherent

limitations of 1) Shared Memory & 2) Global Clock [1, 2, 3].

In an application, nodes may be in different time zones. It is

almost impossible to synchronize the clocks associated with

the individual nodes due to clock drift rate. Again if

processes are running at different machines we cannot

terminate them in the same manner as we do in a standalone

machine. A resource may be shared in two different ways 1)

Read Only Mode & 2) Exclusive Mode. Note that if sharing

is in read only mode, simultaneously many processes, threads

and users can access this one. This sharing does not cause the

critical section. Critical section arises when sharing is in

exclusive mode. Algorithms designated for the mutual

algorithms basically generates schedule when multiple

requests reach to access the critical section [1, 2, 3]. We can

broadly categorise the algorithms given to get mutual

exclusion in Distributed System in two different ways [1]:

A. Message Based

B. Token Based

In message based algorithms, site interested to execute

critical section sends REQUEST messages to all other

participants. On reception of this message, participants

cannot send the REPLY message to the sender if they have

already sent REPLY message to a site which is still executing

the critical section. When a site exists from the critical

section it sends RELEASE message. The RELEASE message

works as an acknowledgement. If participants have received

the RELEASE message from the site to which REPLY

message was sent, REPLY message to the new REQUEST is

sent.

Lamport’s Algorithm, Ricart-Agrawala Algorithm and

Maekawa Algorithm come under this category.

In token based algorithm, a TOKEN is available in the

system. A site can enter into the critical section if it has the

TOKEN. If a site wants to execute the critical section and it

has not TOKEN, the site broadcasts REQUESTS to the other

sites. If the site having the TOKEN is not currently executing

the critical section, sends back the TOKEN. If it is already

executing the critical section, received REQUEST is kept in

waiting state in a queue. Suzuki-Kasami Broadcast

Algorithm, Raymond Tree Based Algorithm and Singhal

Heuristic Algorithm come under this category.

Generally we measure the algorithm’s performance on two

parameters: time and space. In this scenario algorithm’s

efficiency is measured in terms of messages required to

invoke critical section at a time.

In next section this paper is describing the essential

properties required by the mutual exclusion algorithms.

2. REQUIREMENTS

Primary requirement for a mutual exclusion algorithm is that

only one site can only execute the critical section. No two

sites can simultaneously execute the critical section at any

cost. Besides this followings are some other requirements [1]:

2.1 Freedom from Deadlock

Mutual exclusion algorithm should be free from deadlock. In

message based algorithm, a site should not wait infinitely for

the REPLY message. In token based algorithm, a site should

not wait infinitely for the TOKEN.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 10 | NCCOTII 2014 | Jun-2014, Available @ http://www.ijret.org 54

2.2 Free from Starvation

A site should not be forced to wait infinitely whether on the

other there is a site which is frequently executing the critical

section. That is every site should get a chance to execute the

critical section.

2.3 Fairness

Permission for executing the critical section should be always

granted in the same manner in which the REQUESTS appear.

That is disposal of REQUESTS should be in First Come First

Serve (FCFS) basis. When we have to introduce fairness in a

system, queue is the most appropriate data structure to use.

That’s why all the algorithms which are based either on

message or on token usage the queue.

2.4 Fault Tolerance

A mutual exclusion algorithm should work even in presence

of any failure.

Lamport was the first who had proposed an algorithm to

achieve mutual exclusion in Distributed System. In next

section, this paper is exploring the Lamport’s approach to get

mutual exclusion in Distributed System.

3. LAMPORT’S APRROACH OF MUTUAL

EXCLUSION

In 1978, Lamport proposed this concept. Every site maintains

a request set. Let there are n sites in a system. The request set

of site Si will contain all other sites. So the size of request set

(Ri) of Si is (n-1). That is in Ri, Si is absent. Site Si has a

request queue (request_queuei). In request_queue, incoming

requests are placed in the same order in which they arrive.

Every REQUEST has a timestamp associated with it. For

timestamp we have a clock. Every site Si has a clock Ci.

Every REQUEST has two tupples: timestamp and the site

identifier. Let two REQUESTS are coming from Sj and Sk as

(tsj, j) and (tsk, k). Where tsj is indicating the timestamp

associated with this REQUEST and j denotes that this

REQUEST is coming from site Sj and the similar

interpretation for the second REQUEST. Let these

REQUESTS arrive at Si. In request_queuei , REQUEST of Sj

will be at the top if and only if tsj<tsk else REQUEST of Sk

will be at the top in request_queuei.

3.1 Algorithm

3.1.1 Requesting the Critical Section

 When a site Si wants to execute the critical section it

sends a REQUEST (tsi, i) to all the sites of its

request_queuei. The site Si places this REQUEST in

its request_queuei. Note that (n-1) REQUESTS are

sent by Si.

 On reception of this REQUEST, the site Sj sends a

REPLY message to Si. The REPLY message is also

equipped with the timestamp and the site identifier.

The site identifier attached with the REPLY informs

the receiver about the originator of this REPLY.

Happened before (->) relationship is used to identify

that the received REPLY is for in response to the

REQUEST made or not.

3.1.2 Executing Critical Section:

Site Si enters into the critical section when two conditions

meet together:

 Si has received REPLY messages with timestamp

larger than tsi from all other sites.

 Si’s request is at the top of request_queuei.

3.1.3 Releasing the critical section

 The site Si when exits from the critical section, it

removes its REQUEST from its request_queuei and

sends RELEASE messages to all the sites. Note that

release message is also equipped with the timestamp

and identifier. This timestamp is again used by the

receivers to determine that it is coming in response

of the REPLYS that they have earlier sent to the Si.

 When a site Sj receives the RELEASE message, it

deletes the REQUEST of Si from its request_queuej

and sends the REPLY to the site whose REQUEST

is in its request_queuej after the deleted request.

3.2 Performance

For each critical section execution, we have to spend 3(n-1)

messages. First (n-1) REQUEST messages are sent, then (n-1)

REPLY messages are received and finally (n-1) RELEASE

messages are sent again.

3.3 Proof of Correctness

This proof is based on contradiction. Let two sites Si& Sk are

simultaneously executing the critical section.

Fig.1 Sites requesting from the permission

The site Sj receives two REQUESTS from Si and Sk as: (tsi ,i)

and(tsk ,k). Let Sj sends REPLY to the site Si, this will be if

and only if tsi<tsk (as per the algorithm). Let Sj sends REPLY

to the site Sk, this will be if and only if tsk<tsi (as per the

algorithm).These two conditions cannot occur simultaneously.

Finally we can conclude that only one site is executing the

critical section [6].

To reduce the number of messages required in critical section

invocation, we have only two approaches:

 Override a message so that a single message can

play role of more than one message.

 Reduce the size of request set.

Si Sj

Sk

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 10 | NCCOTII 2014 | Jun-2014, Available @ http://www.ijret.org 55

Above mentioned approaches are optimizations. Ricart-

Agrawala approach follows the first criteria while Maekawa

approach follows the second. Next section of this paper is

describing the Ricart-Agrawala algorithm:

4. RICART-AGRAWALA ALGORITHMS

In Ricart-Agrawala algorithm all the assumptions are same

except that REPLY message works as both REPLY and

RELEASE.

4.1 The Algorithm

4.1.1 Requesting the Critical Section

 When a site Si wants to enter the critical section, it

sends a timestamped REQUEST message to all the

sites in its request set.

 When site Sj receives a REQUEST message from

site Si, it sends a REPLY message to site Si if site Sj

is neither requesting nor executing the critical

section or if site Sj is requesting and Si’s request’s

timestamp is smaller than site Sj’s own request’s

timestamp. The request is deferred otherwise.

4.1.2 Executing the Critical Section

 Site Si enters the critical section after it has received

REPLY message from all the sites in its request set.

4.1.3 Releasing the Critical Section

 When site Si exits the critical section, it sends

REPLY message to all the deferred requests.

A site’s REPLY messages are blocked only by sites that are

requesting the critical section with higher priority (i.e., a

smaller timestamp). Thus, when a site sends out REPLY

messages to all the deferred requests, the site with the next

highest priority request receives the last needed REPLY

message and enters the critical section. The execution of

critical section requests in this algorithm is always in the

order of their timestamp.

4.2 Performance

The Ricart-Agrawala algorithm requires 2(N-1) messages per

critical section execution: (N-1) REQUEST and (N-1)

REPLY messages [5].

Its correctness proof is same as Lamport’s approach.

5. ROUCAIROL AND CARVALHO

OPTIMIZATION

Roucairol and Carvalho [4] proposed an improvement to the

Ricart-Agrawala algorithm by observing that once a site Si

has received a REPLY message from a site Sj, the

authorization implicit in this message remains valid until Si

sends a REPLY message to Sj (which happens only after the

reception of a REQUEST message from Sj). Therefore, after

site Si has received a REPLY message from site Sj, site Si can

enter its critical section any number of times without

requesting permission from site Sj until Si sends a REPLY

message to Sj. With this change, a site in the Ricart-Agrawala

algorithm requests permission from a dynamically varying

set of sites and requires 0 to 2(N-1) messages per CS

execution.

6. ANALYSIS OF ROUCAIROL AND

CARVALHO OPTIMIZATION

Let a site Si gets permission from all the sites and it enters

into the critical section. During execution some more

REQUESTS are coming to Si for the permission. If site Si is

repeatedly executing the critical section all the REQUESTS

will be treated as deferred REQUESTS. Requesting sites

have to wait infinitely. Though this optimization optimizes

the execution of critical section by consuming zero messages

in next subsequent invocation, starvation occurs for the other

sites.

7. CONCLUSIONS

Optimization approach suggested by Roucairol and Carvalho

is not fairly good. Once a site gets permission to execute the

critical section it remains always in critical section. Ricart-

Agrawala approach uses request_queue to introduce fairness.

REQUESTS are always processed in the same ways as they

arrive. But the proposed optimization tends the Ricart-

Agrawala approach to starvation.

REFERENCES

[1] Singhal and Shivaratri, “Advanced Concepts in

Operating System,” 18th Reprint Edition,TMH.

[2] Coulouris, Dollimore and Kindberg, “Distributed

System Concepts and Design,” 4
th

 Edition, Pearson

Education.

[3] Gerard Tel, "Introduction to Distributed Algorithms,"

2nd Edition, Cambridge University Press, 2000.

[4] Carvalho O.S.F. and G. Roucairol, “On Mutual

Exclusion in Computer Science, Technical

Correspondance,” Journal of ACM, 1985.

[5] Ricart , G. and A.K. Agrawal, “ An optimal Algorithm

for Mutual Exclusion in Computer Networks,”

Communication of the ACM, Jan. 1981.

[6] Lamport, L, “Time, Clocks and Ordering of Events in

Distributed Systems,” Communication of the ACM,

Jan. 1978.

