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Abstract

In this paper we obtain a result concerning

location of the zeros of a class of polynomials

n
p(z) = Zajz‘, a, =0, wherea, =1anda;'s are real and complex coefficient and numerically less than unity for
j=0

j =0,1,....., n. We obtain least upper bounds enclosing the zeros of polynomials as sharper bounds and compare these with the

ones given by Affane-Aji et al [1] and others [5, 6, 9].

1. INTRODUCTION

Current interest of researchers is to study the location of
zero of polynomials as such they have been writing
extensively on the works based on Gauss [4] and Cauchy
[2]. Numerous books and papers have been written in
modern areas of digital signal processing, Communication
theory, Control theory and Cryptography, to mention a few
and since then there is a greater need for improving the
bounds of the zeros of the polynomials. In this paper we
show that if all the coefficient of class of polynomials are
numerically less than unity. Then our method gives the
sharper bounds as compared to the ones given by Affane-Aji
et al [1]. Moreover, we show by way of examples that their
estimated bounds over estimate our bounds in all the cases
under present investigation.

The first result regarding the location of zeros of
polynomials is due to Gauss whose result was improved by
Cauchy [2] as given by the following theorem:

n-1 _

Theorem 1: Let p(z)=2" +Zajzj be the complex
=0

polynomial. Then all the zeros of P(z) lie in the disc:

Lie in disc:

{z:)g <&l fz:]7 <1+ A (1a)

Where A = max‘aj‘, 0<j<n-1, and ¢is a unique
positive root of the real coefficient polynomial
-1 -2

Q) = X" —[a, 4 |x" ~[a,o[x"* ———ay|x [,

(1b)
C-Affane-Aji et al [1] have given the following general
result of sharper bounds pertaining to the zeros of
polynomials that also include all the bounds obtained by
earlier authors [5, 6, 9].

Theorem 2.1: All the zeros of polynomials

n-1
_ 0 j
p(z) =2 +Zoajz :
j=

{Z:l7<elciz:lg <1+ 6, )iz |z <1+ 6, b 2|z <1+ 6} {21 |7 <1+ A} (2.1.1)

Where &, is the unique positive root of the characteristic equation:

Qk(x)=xk+z{c -3

v=2 k-v j

¢

k=]

k-v

@x"“‘” ~-A=0 (2.1.2)
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Fork >nor<n,
WhereA:maX‘aj‘, a; =0, j<0,
0<j<n-1&nC, =0,if n<r<0.

We note here that  "'C r= and may as will

n!
(n=r)i(n!

n
be denoted by ( J
r

Result 1: For k = 2 from above theorem, the bound and
characteristic Eq. (2.1.2) turn out to be:

{z:|z|<1+52}c{z:|z|£1+ A}, (2.1.3)

Where 52 is the unique positive root of the respective
characteristic equation

Q,(X)=x"+1-[a,,)x—A=0 (214

The above equations coincide with the bounds given by
joyal et al [6].

Result 2: For k = 3, equation (2.1.1) gives

{z:|7| <146, {z:]z <1+ 6, ) {z2: |7 <1+ A},
(2.1.5)

Where J,is unique positive root of the characteristic
equation (2.1.2) is

Q;(x) = x° + (2—|an_1|)x2 + (1_|an—1| —|an_2|)x— A=0,

(2.1.6)
Which coincides with the bounds given by Sun [10]

Result 3 For k = 4, equation (2.1.1) turns out and to be the

disc

{z |7 < é}c {z 7] <1+54}c {z 7] <l+53}c {z d
, (2.1.7)

Where ¢,is the unique positive root of characteristic
equation

We, thus are able to show that this result provides a tool for
obtaining sharper bounds for the location of the zeros of a
class of polynomials with the real or complex co-efficient
each of which is numerically less than unity based on the
following remarks on the bounds of the zeros of polynomial:

2. BOUNDS ON ZEROS

The search for the real zeros of a polynomial function can be
reduced if bounds on the zeros are found. A number M is
bound on the root of a polynomial if every zero lies between
M and M inclusive. That is M is a bound to the zeros of a

polynomial fif —M <anyzerosof f <M .

Lemma 1:
Let f denote a polynomial function whose leading
coefficient is 1 as given by.

f(z)=2"+a,,2"" +....+a,z+4a,

A bound M on the zero of f is the smaller of the two
numbers

max{l,ni‘aj‘}, 1+ Maxﬂaj‘}, j=01..,n-1
j=0

Where max means {} “Choose largest entry in{ }”. The

bounds on the zeros of a polynomial provides good choice
for setting zero min and zero maximum (Z min and Z max)
of the viewing of an angular region.

We note here that we are interested in finding the unknown
radius & to determine the smaller circular bound containing
the zeros of the polynomials.

In this paper, using above Lemma 1, we replace 1+A where
A= Max‘aj‘ 0 < j<n-1 in above theorem [2.1] by B =

Max {1, D} where D = ri‘aj ‘
i=0

In order to show that our estimate of bounds are the least
upper bounds than obtained by C Affane— Aji , we derive

<146, e 2 SE A

Theorem 3

All the zeros of polynomial

n-1
p(z)=2"+> a;z’,

Q4 (X) = X4 + (3_|a'r1—1|)x3 + (3_ 2|an—1| _|an—2|)X2 + (1_|a'n—1| - |an—2| - |an—3|)x -A=0 =0

, (2.1.8)

Which coincides with the bounds given by Jain [5]
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Lie in the disc:
ﬂz| <&c{z:|d<nIc{z:7< M b {2 2| <n}={z:|7 < B}, (3.1.1)

Where 7, is the unique positive root of the characteristic equation

k x-1
Q, x)= XX +Z C _Z cC anij‘ WKV D = 0, (3.12)
v=2| k-v k-1 =L k-v  k-j-1

For K >nor <n,
n-1
Where B = max{1, D} subjectto D= la,| (3.1.3)
=0

Here we note that for the class of polynomial under discussion, we show that for kK > n or <n,
{z 7 <ndc{z:|d <8 c....c{z:]7 < ﬂ}c{z |7 <1+ A}, (3.1.4)

In view of the class of polynomials under the present discussion Here &, is as defined in the theorem [2.1] and 77, lie within and
on the disc |Z| <&<1.
To prove theorem 3, we first prove the following Lemma for K > n:
n-1 _
Lemma 2: Let p(z)=z" + Zajz !, On simplifying equation (3.1.2)

i=0

We rewrite it as:

anl|_|an2|jxk2+ ..... (1= [a] ~[a, o]~ [a, k- D =0,

12 k 1|

— yk _ k-1 _
Q0= (L& el (6 -

For k > n, equation (3.1.5) can be written as:

Qu(x) =@ +x)* b (3.1.6)

(1- |an,1|....|a0 |)X ~D(1+Xx) n—k+1
Now setting:
Ly () = X" 4 (0= [2, 4 )X + e+ (L= (2,4~ [, o)X .

We now give a simple proof for proving (3.16) based on mathematical induction:

Let P(k) denote the statement:

Q (%) = @+x)* (L, (x) - DA+ x)"*"| (3.18)
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Where K =n+r, r=123,....... and n e N, the set of natural numbers
Now for K =n+1, from Eq. (3.1.8), we have

RH.S of Eq. (3.1.8) = (1+ x)™*+ ™" [LM(X) —D(@+X) ”*(”*1)*1] =L,,(x)-D, (3.1.9)

=L,,(x)—D, using (3.1.7)

P(K) is true forn + 1.

Now let us assume P(K) is true fork =n +r, i.e

Qur (9= @+ X)Ly, ()~ DA+x) "], (3.0.11)

We now show that P(k) is true for (n+r) + 1, i.e

Quuryt (0 = A+ X) L2 ()~ DA+X) " |, (3.112)

We now eliminate ]jfrom the Eg. (3.1.10), (3.1.11) and (3.1.12) to give:

Qn+1(x) l

Qn+r (X) (1+ X) - - 0!

Quir(¥) A+%)°
which on simplifying gives:

1 4
Q(n+r)+1 (X) = (1+ X)r -1 [{(1+ X)r _1}Qn+r (X) - X(1+ X)r Qn+1(X)] (3'1'13)

Since the statement that P(k) is proved true for n + 1 and Now in order to obtain the bounds for the characteristic
assumed to be true for k = n + r as explained above, equation Q(X) associated to the given polynomial P, (2)

therefore by mathematical induction from Eq. (3.1.13), it is
evident, that P(k) is also true for k = (n + r) + 1. Thus
statement Lemma 2 istrue fork =n+1,(n+ 1) +1, (n + 1)

+2, LEQM) = Lt Q(x) =Q() (3.2.14)

Here we make use of this Lemma to prove theorem 3.1
pertaining to the polynomials having the co-efficient of the
class of polynomials absolute less than unity. This process function. We therefore, express Q(X) in terms of Q, (X)to

helps us in obtaining the zeros of this class of polynomials
undper discussion g POy study the two cases of k suchas: K >n & k <n.

we note that

In view of Q(X)being a polynomial, is continuous

Case 1:- For k>n, from Eq. 1(b), we have:

n-2

QW = LLQ() = Lt [a+n)" ~[a|@+ )™ ~[a, |+ )" fa i [a]

a
n-1
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T R Bl s B S —[a ™ + i e et 1 = lagn —lay - [ag)
ns0 K 1 K n_l K n-1 K 1 K K 1177k 0
n N o n n-1 n-1 n-2 n
:”!__t)o AR B N +1|—[a, [t + ARSI +1. —|aym —|ay] —|ay]

+-fay ) |a0|)—772((1+ )« —1)] HereR((1+ 7)Y )is positive

K 7k

S b
1 .. C((nY (n-1 N n-1) (n-2)" {n-g)2
> Lt [ +(n—|an_l|)17k +&2J—( J|an_l|}7k L+

m—0 n 1 2
‘ - |a2|_|a1|77k2
1

> ﬂLtOi[LM(X) -D(@A+n, )"’k”] (Using 3.17 of Lemma)
k29T,
Q@) > Lt i{%} (Using 3.18 of Lemma)
Unel/ MRS/

=Q®=0 since Q,(n,)=0. (Since 77, as in (3.1.2) is positive root of Q, (X) =0)
Therefore Q(1) 20 7, — 0is1whichgivesO< & <1.

Case 2:- Now if K < n, we have

QW = Lt@+n) = Lt[a+n)"~la @m0 —cfafi+ ] ~fao]} (by (16))

e 1+ n—k+1 _1
a‘n—(k—l)‘(l—'_ ) k) D[( nk7)7 J:I
k

n-(k-1)
1
> Lt (M] [77k A+7,)" —|an,1|(1+ ), _|an—2|(1+ )" 1~ an—(k—l)‘nk - D]

=0 N
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A+n)" "

k

> Lt

7 —0

e -

k-1)(k -2
i+ (-1 i+ [ SR -2, -

An_(k-1) ‘ﬂk - D]

Lt
m—0 in
> Q(17,) =0

In order to proof of above theorem we show that7, <77, ;.
But before we give the proof, we first prove the following
the recurrence relation of Q, (X) as given below:

Recurrence relation of Q, ()
Lemma 3 Q, (X) as defined above by Eg. (3.1.7), then

A+ X)Q(X) —Q(x)+ Dx =0 (4.1.1)

Proof:- From Eq. (3.1.8), we have
1+x)"Q, () =L,,(x) - DA+x)"** (412
Replacing k by k-1 from eq. (3.1.8) we have

1+ %) ?Q () =L,,(x) - DA+ x)"™? (4.13)

Now eliminating L, (X) from above two equations, we
have

L+ %)™ Q, (%) — (L+X)Q (M)]= DA+ X)L+ %) 1]

This prove recurrence relation given by (4.1.1)

Proof of the Theorem:-

Since 77, , is the rootof Q, , (7, ;) =0 (4.1.4)

Now put X =177,_, inthe (4.1.1) is

Where D & 77, _; are

Now

Qy (77k—1) = Qg (77k—1)_ (1"' k4 )Qk—l (77k—1)
=D7,,-D=>a| 0<j<n-1

Hence Qg (UH) > 0, where as Qg (nk ) = 0. This implies

1, < 1,_, this complete the proof of the theorem.

2.1 Some Examples based on the above Theorem:

Corresponding to the polynomial P,z we solve the so

called characteristic equation Q, (X) = 0.The output of this

result is as given below in the following tables. In the I*
column we have the degree from 1 to k of the algebraic

equation Q, (X) =0 in the second column we have the

corresponding bounds 1+, for the radius of the circle

that contains all the zeros of the polynomials and in the 3™
column we tabulate the present bounds by the present class

of polynomials corresponding to the bounds max(1,7, ) .

On comparison we show that the present bounds obtained
are the infimum (lesser of lub) enclosing the respective
zeros of the polynomials as compared to the lub of

C Affane Aji. The output of these example is as given
below:

Example 1:

Let p(Z):ZE’+%(Z4+Z2 +1), true bound =

(1+ k4 )Qk—l (1+ 77k71)_ Q (1+ P ) +1,., =0, 0.91119850
Values Their Bound Our Bound Over estimate of
f(f |z| <1+ 5, (of others) | |z <max}l,n =1k >3 error
1 1.25000000 {1, 75} For k = 10, the %
2 2.00000000 {1,1.31872929=1.3872929 corresponding to the
3 1.21972895 {1,.43861017} bounds obtained by C.
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4 1.21372896 {1.38706535} Affane. Aji. et al [1]
5 1.9237991 {1.33438766} over the  present
6 1.1802918 {1.29419863} estimate, errors by a
7 1.17815386 {1.27942836} factor 2.6.

8 1.16181430 {1,.25511065}

9 1.156181430 {1,.23659091}

10 1.14753595 {1,.22058214}= 1.00000000

Example 2:

Let p(z) =z +%

1, 1.1

1
(2 +2% -2 -=z° SRt

3

3 4

Values | Their Bound Our Bound Over estimate of error
‘Ig |7 <1+ 6, (of others) | |z] < max}Ln }=1k=>3:
1 1.50000000 {1,2.616}=2.6166666 Over estimation factor of
2 1.36602593 {1,2.19292693}=2.1929269 previous authors
3 1.36602542 {1,.887149531} corresponding to k=10, the
4 1.36602542 {1,.71292043} bounds obtained C. Affane.
5 1.32471797 {1,51521635} Aji. et al [1] over estimate
6 1.30080360 {1,51451182} the present bounds at least
7 1.30080357 {1,.47310513} by a factor 5.8 and in view
8 1.29996768 {1, 46837437} of error is 0.31393132:
9 1.27138251 {1,.40011427} 0.053474
10 1.26045701 {1,.37009931}

Example 3:

Let p(z) =z* +%22‘°’ —%(z21 +2% - 215)—i

10 50

1
(2° -2 +2%)+ =2 -

1
E =0, true bound = 0.9225556

Values Their Bound Our Bound Over estimate of error
f(f |z| <1+ 6, (of others) | |z < max{L n,} =k, k = 2
1 1.20000000 {1,0.995} Over estimation of previous
2 1.7082014 {1,1.657956} authors[1] , corresponding to
3 1.708204 {1,.49147788} k=10 by < factor 2.4. In view
4 1.15340459 {1,.44147179} of the rel. errors of other
5 1.14820807 {1,.381310340} authors and present authors as:
6 1.14857797 {1,.33248603} 0.18775156: 0.077444.
7 1.12732975 {1.29817784}
8 1.11938045 {1,.27032855}
9 1.11294632 {1,24874921}
10 1.11030725 {1.23107074}

Example 4:

p(z) = z% +2i02‘°’5(5234 +10z% + 42> + 42*) +ﬁ)(20222 +52 +10z" + 42" + 47" +202°

Let

+%z4 +10z% + 4z +4), true bound=.89920688

Values Their Bound Our Bound Over estimate of error

f(f |z| <1+ 6, (of others) | |z| < max{Ln }=1k=>3

1 1.50000000 {1,1.77}=1.7714205 Over estimate of error factors
2 1.7539049 {1,1.75725359}=1.75725359 corresponding to k = 10,the
3 1.2670351 {1,.57764816} bounds obtained C. Affane.
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4 1.34667841 {1,51961333}
5 1.31837386 {1,51664084}
6 1.29831222 {1,39623964}
7 1.27480981 {1,.38846096}
8 1.25438958 {1,.36794695}
9 1.23839181 {1,.34069264}
10 1.22287373 {1,.3150619}

Aji. et al [1] overstate the
present bounds or least by a
factor 3. In view of negative
error of other authors and the
present as 0.32286685:
0.10079

From the above table we note the upper bounds obtained by
C. Affane.Aji. et al [1] over estimate the corresponding
bounds due to the present investigation in all the cases at
least by a factor 2.5 and thereby is confirm that in all the
cases K >3, unit disc is the least upper bounds enclosing
the zeros of the class of polynomials under the present
discussion.
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