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Abstract 
In this paper we obtain a result concerning the location of the zeros of a class of polynomials 
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'1,0,)(  are real and complex coefficient and numerically less than unity for 

......,,1,0 nj   We obtain least upper bounds enclosing the zeros of polynomials as sharper bounds and compare these with the 

ones given by Affane-Aji et al [1] and others [5, 6, 9]. 

 

-------------------------------------------------------------------***------------------------------------------------------------------- 

1. INTRODUCTION 

Current interest of researchers is to study the location of 

zero of polynomials as such they have been writing 

extensively on the works based on Gauss [4] and Cauchy 

[2]. Numerous books and papers have been written in 

modern areas of digital signal processing, Communication 

theory, Control theory and Cryptography, to mention a few 

and since then there is a greater need for improving the 

bounds of the zeros of the polynomials. In this paper we 

show that if all the coefficient of class of polynomials are 

numerically less than unity. Then our method gives the 

sharper bounds as compared to the ones given by Affane-Aji 

et al [1]. Moreover, we show by way of examples that their 

estimated bounds over estimate our bounds in all the cases 

under present investigation. 

 

The first result regarding the location of zeros of 

polynomials is due to Gauss whose result was improved by 

Cauchy [2] as given by the following theorem: 

 

Theorem 1: Let 
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n zazzp  be the complex 

polynomial. Then all the zeros of )(zp lie in the disc: 

   ;1:: Azzzz     (1a) 

 

Where
jaA max , 10  nj , and  is a unique 

positive root of the real  coefficient polynomial 
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C-Affane-Aji et al [1] have given the following general 

result of sharper bounds pertaining to the zeros of 

polynomials that also include all the bounds obtained by 

earlier authors [5, 6, 9]. 

 

Theorem 2.1: All the zeros of polynomials 
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Lie in disc: 

 

         Azzzzzzzzzz kk   1:1:.....1:1:: 11   (2.1.1) 

 

Where k  is the unique positive root of the characteristic equation: 
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For nornk  ,  

Where 0,0,max  jaaA jj
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  .0,0&10  rnifnnj Cr
 

 

We note here that  
!)(!)(

!

rrn

n
Cr

n


 and may as will 

be denoted by 
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Result 1: For k = 2 from above theorem, the bound and 

characteristic Eq. (2.1.2) turn out to be: 

 

   ,1:1: 2 Azzzz     (2.1.3) 

 

Where 
2  is the unique positive root of the respective 

characteristic equation 
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2

2   AxaxxQ n  (2.1.4) 

 

The above equations coincide with the bounds given by 

joyal et al [6]. 

 

Result 2: For 3k , equation (2.1.1) gives 

 

     Azzzzzz  1:1:1: 23  ,

    (2.1.5) 

 

Where 3 is unique positive root of the characteristic 

equation (2.1.2) is 
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    (2.1.6) 

 

Which coincides with the bounds given by Sun [10] 

 

Result 3 For k = 4, equation (2.1.1) turns out and to be the 

disc 

 

         Azzzzzzzzzz  1:1:1:1:: 234 

 , (2.1.7) 

 

Where 4 is the unique positive root of characteristic 

equation 
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, (2.1.8) 

 

Which coincides with the bounds given by Jain [5] 

 

We, thus are able to show that this result provides a tool for 

obtaining sharper bounds for the location of the zeros of a 

class of polynomials with the real or  complex co-efficient 

each of which is numerically less than unity based on the 

following remarks on the bounds of the zeros of polynomial: 

 

2. BOUNDS ON ZEROS 

The search for the real zeros of a polynomial function can be 

reduced if bounds on the zeros are found. A number M is 

bound on the root of a polynomial if every zero lies between 

M and M inclusive. That is M is a bound to the zeros of a 

polynomial f if MfofzerosanyM  . 

 

Lemma 1: 

Let f denote a polynomial function whose leading 

coefficient is 1 as given by. 
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n

n  


 

 

A bound M on the zero of f is the smaller of the two 

numbers 
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Where max means {} “Choose largest entry in ”. The 

bounds on the zeros of a polynomial provides good choice 

for setting zero min and zero maximum (Z min and Z max) 

of the viewing of an angular region. 

 

We note here that we are interested in finding the unknown 

radius   to determine the smaller circular bound containing 

the zeros of the polynomials. 

 

In this paper, using above Lemma 1, we replace 1+A where 

A = Max
ja 10  nj  in above theorem [2.1] by B = 

Max {1, D} where 
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In order to show that our estimate of bounds are the least 

upper bounds than obtained by AjiAffaneC  , we derive 

the following theorem: 

 

Theorem 3 

All the zeros of polynomial 
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Lie in the disc: 

 

  },:{}:{....:{}:{} 21    zzzzzzzzz kk       (3.1.1) 

 

Where k  is the unique positive root of the characteristic equation 
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For ,nornk   

 

Where 





1

0

.},1max{
n

j

jaDtosubjectDB        (3.1.3) 

 

Here we note that for the class of polynomial under discussion, we show that for ,nornk   

 

  },1:{:{.....}:{}: Azzzzzzzz kk     (3.1.4) 

 

In view of the class of polynomials under the present discussion Here k is as defined in the theorem [2.1] and k  lie within and 

on the disc .1 z  

 

To prove theorem 3, we first prove the following Lemma for nk  : 

 

Lemma 2: Let 
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We rewrite it as:  
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For k > n, equation (3.1.5) can be written as: 
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Now setting: 
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We now give a simple proof for proving (3.16) based on mathematical induction: 

 

Let P(k) denote the statement: 
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Where ,..,.........3,2,1, Nnandrrnk  the set of natural numbers 

 

Now for 1 nk , from Eq. (3.1.8), we have 

 

R.H.S of Eq. (3.1.8) =   ,)()1()()1( 1
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L.H.S of Eq. (3.1.8) =   Dxaaxa
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= DxLn  )(1 , using (3.1.7) 

 

P(k) is true for n + 1. 

 

Now let us assume P(k) is true for k = n + r, i.e 
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We now show that P(k) is true for (n + r) + 1, i.e 
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We now eliminate ]jfrom the Eq. (3.1.10), (3.1.11) and (3.1.12) to give: 
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which on simplifying gives: 
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Since the statement that P(k) is proved true for n + 1 and 

assumed to be true for k = n + r as explained above, 

therefore by mathematical induction from Eq. (3.1.13), it is 

evident, that P(k) is also true for k = (n + r) + 1. Thus 

statement Lemma 2 is true for k = n + 1, (n + 1) + 1, (n + 1) 

+ 2, 

 

Here we make use of this Lemma to prove theorem 3.1 

pertaining to the polynomials having the co-efficient of the 

class of polynomials absolute less than unity. This process 

helps us in obtaining the zeros of this class of polynomials 

under discussion. 

 

Now in order to obtain the bounds for the characteristic 

equation )(xQ associated to the given polynomial )(zPn  

we note that 
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In view of )(xQ being a polynomial, is continuous 

function. We therefore, express )(xQ in terms of )(xQk to 

study the two cases of k such as: .& nknk   

 

 

Case 1:- For k>n, from Eq. 1(b), we have: 
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Case 2:- Now if ,nk  we have 
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In order to proof of above theorem we show that 1 kk  . 

But before we give the proof, we first prove the following 

the recurrence relation of )(xQk  as given below: 

 

Recurrence relation of )(xQk  

 

Lemma 3 )(xQk as defined above by Eq. (3.1.7), then 
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Proof:- From Eq. (3.1.8), we have 
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Replacing k by k-1 from eq. (3.1.8) we have 
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Now eliminating )(1 xLn from above two equations, we 

have 
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This prove recurrence relation given by (4.1.1) 

 

Proof of the Theorem:- 

 

Since 1k is the root of 0)( 11  kkQ    (4.1.4) 

 

Now put 1 kx   in the (4.1.1) is 
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Where D & 1k are 

 

Now 
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Hence   ,01 kRQ  where as   .0kRQ  This implies 

1 kk  this complete the proof of the theorem. 

 

2.1 Some Examples based on the above Theorem: 

Corresponding to the polynomial zPn we solve the so 

called characteristic equation .0)( xQk The output of this 

result is as given below in the following tables. In the I
st
 

column we have the degree from 1 to k of the algebraic 

equation 0)( xQk  in the second column we have the 

corresponding bounds k1  for the radius of the circle 

that contains all the zeros of the polynomials and in the 3
rd

 

column we tabulate the present bounds by the present class 

of polynomials corresponding to the bounds ),1max( k . 

On comparison we show that the present bounds obtained 

are the infimum (lesser of lub) enclosing the respective 

zeros of the polynomials as compared to the lub of 

.AjiAffaneC  The output of these example is as given 

below: 

 

Example 1: 

Let ),1(
4

1
)( 245  zzzzp  true bound  = 

0.91119850 

Values 

of 

K 

Their Bound Our Bound Over estimate of 

error )(1 othersofz k  :,3,1},1max}  kz k  

1 1.25000000 {1, .75} For k = 10, the % 

corresponding to the 

bounds obtained by C. 
2 2.00000000 {1,1.31872929=1.3872929 

3 1.21972895 {1,.43861017} 
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4 1.21372896 {1.38706535} Affane. Aji. et al [1] 

over the present 

estimate, errors by a 

factor 2.6. 

5 1.9237991 {1.33438766} 

6 1.1802918 {1.29419863} 

7 1.17815386 {1.27942836} 

8 1.16181430 {1,.25511065} 

9 1.156181430 {1,.23659091} 

10 1.14753595 {1,.22058214}= 1.00000000 

 

Example 2: 

Let ,
4

1

3

1

5

1

3

1
)(

2

1
)( 3610121315  zzzzzzzzp  

 

Values 

of 

K 

Their Bound Our Bound Over estimate of error 

)(1 othersofz k  :,3,1},1max}  kz k  

1 1.50000000 {1,2.616}=2.6166666 Over estimation factor of 

previous authors 

corresponding to k=10, the 

bounds obtained  C. Affane. 

Aji. et al [1] over estimate 

the present bounds at least 

by a factor 5.8 and in view 

of error is 0.31393132: 

0.053474 

2 1.36602593 {1,2.19292693}=2.1929269 

3 1.36602542 {1,.887149531} 

4 1.36602542 {1,.71292043} 

5 1.32471797 {1,.51521635} 

6 1.30080360 {1,.51451182} 

7 1.30080357 {1,.47310513} 

8 1.29996768 {1,.46837437} 

9 1.27138251 {1,.40011427} 

10 1.26045701 {1,.37009931} 

 

Example 3: 

Let ,0
10

1

50

1
)(

10

1
)(

8

1

5

1
)( 236101516212325  zzzzzzzzzzp true bound = 0.9225556 

 

Values 

of 

K 

Their Bound Our Bound Over estimate of error 

)(1 othersofz k  2,},1max{  kkz k  

1 1.20000000 {1,0.995} Over estimation of previous 

authors[1] , corresponding to 

k=10 by < factor 2.4. In view 

of the rel. errors of other 

authors and present authors as: 

0.18775156: 0.077444. 

2 1.7082014 {1,1.657956} 

3 1.708204 {1,.49147788} 

4 1.15340459 {1,.44147179} 

5 1.14820807 {1,.381310340} 

6 1.14857797 {1,.33248603} 

7 1.12732975 {1.29817784} 

8 1.11938045 {1,.27032855} 

9 1.11294632 {1,24874921} 

10 1.11030725 {1.23107074} 

 

Example 4: 

Let 

89920688.),4410
6

35

204410520(
140

)44105(
20

1
)(

24

51718192122303132343535





boundtruezzz

zzzzzz
i

zzzzzzzp

 

 

Values 

of 

K 

Their Bound Our Bound Over estimate of error 

)(1 othersofz k  3,1},1max{  kz k  

1 1.50000000 {1,1.77}=1.7714205 Over estimate of error factors 

corresponding to k = 10,the 

bounds obtained C. Affane. 
2 1.7539049 {1,1.75725359}=1.75725359 

3 1.2670351 {1,.57764816} 
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4 1.34667841 {1,.51961333} Aji. et al [1] overstate the 

present bounds or least by a 

factor 3. In view of negative 

error of other authors  and the 

present  as 0.32286685: 

0.10079 

5 1.31837386 {1,.51664084} 

6 1.29831222 {1,39623964} 

7 1.27480981 {1,.38846096} 

8 1.25438958 {1,.36794695} 

9 1.23839181 {1,.34069264} 

10 1.22287373 {1,.3150619} 

 

 

From the above table we note the upper bounds obtained by 

C. Affane.Aji. et al [1] over estimate the corresponding 

bounds due to the present investigation in all the cases at 

least by a factor 2.5 and thereby is confirm that in all the 

cases 3k , unit disc is the least upper bounds enclosing 

the zeros of the class of polynomials under the present 

discussion. 
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