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Abstract 
This paper presents the work on functional magnetic resonance imaging slice registration. Hilbert-Huang transform is used to 

extract the features of the source image slice and target image slice. The features are used as inputs for the echo state neural 

network (ESNN) which is recurrent neural network. The training of ESNN is carried out by changing the different number of 

reservoirs in the hidden layer that result in minimum error between floating and target image slice after registration. Statistical 

features of the decomposed signals of the source and target image slices are used in the input layer of ESNN. The accuracy of the 

registration is high. 
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1. INTRODUCTION 

Image registration is an important requirement in medical 

imaging. Image registration is the most important step of 

image fusion task [Yang-Ming Zhu, 14]. Image fusion is 

used to combine images obtained from different imaging 

modalities [Woei-Fuh Wang et al., 12]. With increase in a 

number of imaging techniques and imaging sensors, many 

modalities are used for image registration. More detailed 

information can be obtained with many modalities and com-

plete characterization of the image anatomies and functional 

properties are attainable. The analysis of multiple acquisi-

tions of the same subject, comparisons of images across sub-

jects or groups of subjects are done by the doctors. 

 
The medical experts rely on manual comparisons of images, 

but the abundance of information available makes this task 

difficult. Automatic processing of the images is required 

which produce a summary and potentially a visual display of 

all the available information relevant to the examined body 

parts. 

 

2 RELATED WORKS 

The image analysis system is presented [Liao et al., 5] for 

SPECT images that perform a series of image processing 

procedures including 3D image registration, gray level nor-

malization, and brain extraction, which map all the 3D brain 

data to the same space for further analysis. 

 

The aligned images undertake a standard statistical analysis. 

One such method is a paired t test. This is used to detect the 

areas in the images with significant deviations. A method is 

proposed [Cao, 2004] that involves repeated iteration that 

considers closeness. The algorithm shows closest point map 

on a regular grid that introduces a registration error. 

 

Registration is described [Daneshvar and Ghassemian, 2] as 

a process to align differently acquired images of the same 

subject. Automated registration of CT and MR head images 

is studied. It is assumed that images are only of relative 

translation and rotation. An automatic method to register CT 

and magnetic resonance (MR) brain images by using first 

principal directions of feature images is [Lifeng Shang et al., 

6] used. The goal of the registration is to find the optimal 

transformation [Shaoyan sun et al., 8]. Mutual information 

(MI) is used as a similarity measure when the two images 

matches [Yongsheng Du et al., 13]. A measure is used and 

tested on magnetic resonance (MR) and CT images [Dejan 

Tomazevic et al., 3]. The measure is tested on different im-

ages considered for registration. 

 

3. MATERIALS 

Data has been collected from a standard database available 

in statistical parametric mapping (SPM) website. The web-

site presents Positron emission tomography (PET) and func-

tional magnetic resonance imaging (fMRI) data collected for 

single subject and multiple subjects. 
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4. METHODS 

4.1 Hilbert-Huang Transform (Empirical Mode De-

composition (EMD) and Hilbert Transform (HT) 

The features of the image slices are extracted using HHT 

[Suganthi and Purushothaman, 7]. These features are used to 

train the ESNN and align the image slices. Instead of taking 

the representative points of the floating image and target 

image, the entire floating image is aligned with the target 

image. 

 

 
 

An image is formed from the quantized values of the conti-

nuous signals based on the intensity value recognized. The 

details of frequencies, amplitude and phase contents can be 

obtained by decomposition of the signal. This is possible by 

using EMD followed by Hilbert Transform (HT) [Jayashree 

et al., 4] and [Stuti et al., 9]. The EMD produces mono com-

ponents called intrinsic mode functions (IMFs) from the 

original signal. The signal is the intensity values of a row in 

the image slice. In a 64 X 64 image slice, 64 signals corres-

ponding to 64 rows and another 64 signals corresponding to 

columns of the image slice are used for alignment. 

 

Many IMFs can be present in the signal. An IMF represents 

a waveform. The waveform contains a different amplitude. 

Instantaneous frequency (IF) and instantaneous amplitude 

(IA) are obtained by applying HT on an IMF. A signal 

should be symmetric with regard to the local zero mean, and 

should contain the same number of extreme and zero cross-

ings. 

 

The steps involved in EMD of a signal X(t) with harmonics 

(due to the presence of noise in the image slice) into a set of 

IMFs are as follows. 

Step 1: All local maxima of X(t) are identified and the 

points are connected using cubic spline. The interpolated 

curve is obtained. The upper curve is called the upper 

envelope (Maximum_envelope). 

 

Step 2: All local minima of X(t) are identified and the points 

are connected using cubic spline. The lower curve is called 

the lower envelope (Minimum_envelope) obtained by cubic 

spline. 

 

Step 3: The average is computed by using equation (1): 

 

    (1) 

 

where 

a = Maximum_envelope and 

b = Minimum_envelope. 

 

Step 4: A new signal is obtained by using equation (2) 

 

  (2) 

 

where 

h11(t)  is called first IMF. Subsequent IMF‟s are to be found 

if there are some overshoots and undershoots in the IMF. 

Hence, the envelope mean differs from the true local mean 

and h11(t) becomes asymmetric. 

 

In order to find the additional IMF‟s, h11(t) is taken as the 

new signal. After n
th

 iteration, we have equation (3): 

 

              (3) 

 

where 

M1n(t) is the mean envelope after the n
th

 iteration and 

h1(n-1)(t) is the difference between the signal and the mean 

envelope at the (k-1)
th

 iteration. 

 

Step 5: Coarse to fine (C2F) is calculated by using equations 

(4-6). 

 

    (4) 

 

where 
nIMF  = final IMF obtained 
nIMF   

  (5) 

 

Similarly, 

 

2

b)(a
M




(t)MX(t)(t)h 1111 

(t)M(t)h(t)h 1n1)1(n1n  

n1 IMFC2F 

1)(nn2 IMFIMFC2F 

Table 1: Sample image slices used for image 

registration 
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   (6) 

 

where 

C2Fn is the original signal. 

 

Step 6: Fine to coarse (F2C) is calculated by using equations 

(7-9). 

 

     (7) 

 

    (8) 

 

  

 (9) 

 

where 

F2Cn is the original signal. 

 

Step 7: Hilbert transform is applied for each IMF and ana-

lytical signal is obtained. A complex signal is obtained from 

each IMF by using equation (10). 

 

Analytic (IMF) = real(IMF) + imag(IMF)   (10) 

 

Step 8: Instantaneous frequencies are obtained from analyti-

cal signal by using equation (11) 

 

IF= [0.5x(angle(-Xanalytic(t+1)*conj(Xanalytic(t-1)))+π]/(2xπ)  

(11) 

 

Step 9: Instantaneous amplitudes are obtained from the ana-

lytical signal by using equation (12). 

 

IA= sqrt(real(IMF)
2
 + imag(IMF)

2 
)   (12) 

 

Feature Extraction from EMD 

Twelve features are extracted: six features from each IF and 

six features from each IA. The features are mean, standard 

deviation, norm, maximum and minimum of IF. Similarly 

mean, standard deviation, norm, maximum and minimum of 

IA and energy of F2C and C2F waveforms of an IMF. 

 

The features are given in equations (13-25). 

 

V1=1/d ∑(IF)   (13) 

 

where 

d is samples in a frame and 

V1 is mean value of Instantaneous Frequency. 

 

V2 =1/d ∑(IF-V1)    (14) 

 

where 

V2 is standard deviation of Instantaneous Frequency. 

 

V3=maximum (IF)   (15) 

 

V4=minimum (IF)   (16) 

 

V5=norm (IF)
2
    (17) 

 

where 

V5 is energy value of frequency. 

 

V6 = 1/d ∑ (IA)  (18) 

 

V7= 1/d ∑(IA-V6)     (19) 

 

where 

V7 is standard deviation of Instantaneous amplitude 

 

V8=maximum (IA)  (20) 

 

V9=minimum (IA)   (21) 

 

V10=norm (IA) 
2
   (22) 

 

where 

V10 is energy value of Amplitude. 

 

V11= ∑ log2 (abs(F2C))
2
   (23) 

 

where 

V11 is Log 2 value of F2C 

 

V12= ∑ log2 (abs(C2F))
2
   (24) 

 

Where 

 

V12 is Log 2 value of C2F.    (25) 

 

4.2 Echo State Neural Network 

The ESNN is presented in Figure 1. It possesses highly in-

terconnected and recurrent topology of nonlinear processing 

element (PEs). The PE contains a reservoir of rich dynamics. 

PE contains information about the history of input and out-

put patterns. The outputs of the internal PEs (echo states) are 

fed to a memoryless with adaptive readout network. The 

memoryless readout is trained, whereas the recurrent topolo-

gy has fixed connection weights. This reduces the complexi-

ty of recurrent neural network (RNN) training to simple li-

near regression while preserving a recurrent topology. The 

echo state condition is defined in terms of the spectral radius 

(the largest among the absolute values of the eigenvalues of 

a matrix, denoted by (|| ||) of the reservoir‟s weight matrix 

(||W||<1). This condition states that the dynamics of the 

ESNN is uniquely controlled by the input, and the effect of 

the initial states vanishes. The recurrent network is a reser-

voir of highly interconnected dynamical components, states 

of which are called echo states. The memory less linear rea-

dout is trained to produce the output. 

 

By considering the recurrent discrete-time neural network 

given in Figure 1 with „M‟ input units, „N‟ internal PEs, and 

„L‟ output units, the value of the input unit at time „n‟ is u(n) 

= [u1(n), u2(n), . . . , uM(n)]
T
, 

 

 

11)(nnn IMF.......IMFIMFC2F  

11 IMFF2C 

212 IMFIMFF2C 

n21n IMF.......IMFIMFF2C 
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The internal units are 

 

x(n)=[x1(n), x2(n), , xN(n)]
T  

(26) 

 

Output units are 

 

y(n) = [y1(n), y2(n),, yL(n)]
T
  (27) 

 

The connection weights are given 

a) in an (N x M) weight matrix 
back

ij

back WW   for 

connections between the input and the internal PEs, 

b) in an N × N matrix 
in

ij

in WW   for connections 

between the internal PEs 

c) in an L × N matrix 
out

ij

out WW   for connections 

from PEs to the output units and 

d) in an N × L matrix 
back

ij

back WW   for the connec-

tions that project back from the output to the internal 

PEs. 

 

The activation of the internal PEs (echo state) is updated 

according to equation (28). 

 

x(n + 1) = f(W
in

 u(n + 1) + W X(n) + 

W
back 

y(n)),    (28) 

 

where 

f = ( f1, f2, . . . , fN) are the internal PEs‟ activation functions. 

All fi‟s are hyperbolic tangent functions
xx

xx

ee

ee







. The out-

put from the readout network is computed according to 

 

y(n + 1) = f
out 

(W
out 

x(n + 1)), .    (29) 

 

where 

 are the output unit‟s nonli-

near functions. 

 

Training ESNN Algorithm 

The algorithm for training the ESNN is as follows: 

Step 1: Read a Pattern (I) (floating image) and its Target (T) 

value. 

Step 2: The number of reservoirs is fixed. 

Step 3: The number of nodes in the input layer = length of 

pattern. 

Step 4: The number of nodes in the output layer = number 

of target values. 

Step 5: Random weights are initialized between input and 

hidden layer (Ih) hidden and output. 

Step 6:  Obtain S = tanh(Ih*I + Ho * T + Ho * T). 

Step 7: Obtain     a = Pseudo inverse (S). 

Step 8: Obtain    Wout = a * T and store Wout for testing. 

 

The algorithm for testing / registration on image slice is 

as follows: 

Step 1: Read a Pattern (I) (floating image). 

Step 2: Obtain F=Ih*I. 

Step 3: TH = Ho * T. 

Step 4: TT = R*S. 

Step 5: S = tanh(F+TT+TH). 

Step 6: a = Pseudo inverse (S). 

Step 7: Estimated = a * Wout. 

Step 8: Relocate the intensity values. 

 

5. RESULTS AND DISCUSSIONS 

Images have been collected from the standard database 

available in SPM website. The website presents PET and 

fMRI data collected for single subject and multiple subjects. 

Rest condition and task related images have been presented 

with realignment, co-registration, normalization, smoothing 

wherever applicable. 

 

Figures (2-11) present plots of the statistical features ob-

tained through equations (13-22). 

 

),....,,( 21

out

L

outoutout ffff 

 

Fig. 1. Schematic diagram for training ESNN with HHT 

features 
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Figure 2 to 6 show three curves. X-axis shows row number. 

Y-axis shows the mean value, standard deviation, norm, 

maximum value and minimum value of instantaneous ampli-

tude (IA) for each row for target image, resized image (float-

ing) and rotated image (floating). The registration of the 

floating image with the target image is perfect when the red 

color or green color lines are closer to the blue color line. 

This indicates that, the floating image has been transformed 

to match the target image. 

 

 
 

 
Fig 2 Mean value for each row for IA 
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Fig. 3 Standard deviation for each row for IA 

0 10 20 30 40 50 60
0

200

400

600

800

1000

Rows

S
t
d

 o
f
 I
A

 

 

Target slice

Resized

Rotated -10degrees-floating slice

 
Fig 4 Norm for each row for IA 
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Fig 5 Maximum value for each row for IA 
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Fig 6 Minimum value for each row for IA 
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Figure 7 to 11 show three curves. X-axis shows column 

number. Y-axis shows the mean value, standard deviation, 

norm, maximum value and minimum value of instantaneous 

amplitude (IA) for each column for target image, resized 

image (floating) and rotated image (floating). 

 

 
Fig 7 Mean value for each column for IA 
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Fig 9 Norm for each column for IA 
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Fig 10 Maximum value for each column for IA 
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Fig 11 Minimum value for each column for IA 
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Fig 8 Standard deviation for each column for IA 

0 10 20 30 40 50 60
0

200

400

600

800

1000

Columns

S
t
d

 o
f
 I
A

 

 

Target slice

Resized

Rotated -10degrees-floating slice



IJRET: International Journal of Research in Engineering and Technology      eISSN: 2319-1163 | PISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org                                                                   865 

 
 

 
 

Figure 13 shows estimation performance for ESNN and 

HHT+ESNN for vertical direction. 

 
 

Figure 14 shows estimation performance of proposed algo-

rithms for Horizontal direction 

 

 
 

Figure 15 shows estimation performance of proposed algo-

rithms for Rotation. 

 

 
 

Figure 16 shows estimation performance of ESNN and 

HHT+ESNN for CW/CCW. 

 

5.1 Comparison of Error Entropy of Proposed Al-

gorithms 

Figure 17 shows error entropy of proposed algorithms for 

vertical translation. The error entropy for HHT+ESNN is 

minimal 

 

Figure 18 shows error entropy of proposed algorithms for 

vertical direction. Except ESNN, the error entropy for 

HHT+ESNN is least. 

 

Figure 19 shows error entropy of proposed algorithms for 

horizontal translation. Except ESNN, the error entropy for 

other proposed algorithms are minimal. The error entropy 

for HHT+ESNN is least when compared to other proposed 

algorithms. 

 

 
Fig.15. Rotation estimated by proposed algorithms 
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Fig.12. Vertical translation estimated by proposed algo-

rithms 
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Fig.13. Vertical direction estimated by proposed algo-

rithms 
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Fig. 14. Horizontal direction estimated by proposed al-

gorithms 
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Fig. 16. CW/ CCW estimated by proposed algorithms 
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Figure 20 shows error entropy of proposed algorithms for 

horizontal direction. Except ESNN, the error entropy for 

proposed algorithm is minimal. 

 

 
 

Figure 21 shows error entropy of proposed algorithms for 

Rotation. The error entropy for HHT+ESNN is least when 

compared to ESNN algorithm. 

 

 
 

 
Fig. 17. Error entropy for Vertical translation 
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Fig. 18 Error entropy for Vertical direction 
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Fig. 19 Error entropy for Horizontal translation 
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Fig. 20. Error entropy for Horizontal direction 
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Fig. 21. Error entropy for Rotation 
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Fig. 22. Error entropy for CW/CCW 
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Figure 22 shows error entropy of proposed algorithms for 

CW/CCW. Except ESNN, the error entropy for proposed 

algorithm HHT+ESNN is minimal. The figures show 

HHT+ESNN produce least error entropy which indicates 

high registration accuracy. 

 

6. CONCLUSIONS 

Hilbert Huang transform has been used for extracting fea-

tures from the fMRI slices. These features are used as inputs 

for training ESNN algorithm. Using the trained information, 

registration of fMRI slices are done. The HHT features helps 

in accuracte image slice registration. 
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