
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 412

A NOVEL LOAD BALANCING MODEL FOR OVERLOADED CLOUD

PARTITION

Mithra P B
1
, P Mohamed Shameem

2

1
Mtech Student, Dept of CSE, TKM Institute of Technology, Kerala, India

2
Associate Professor, Dept of CSE, TKM Institute of Technology, Kerala, India

Abstract
Load balancing is an efficient solution that distributes excess workload evenly to all nodes in cloud environment. The Load

balancing model is used for the public cloud having numerous nodes in different geographic locations. The model divides public

cloud into several cloud partitions. When partition status becomes overloaded, cloud partitioning is repeated. It reduces the working

efficiency and expected response time of the system. To overcome this issue we propose a novel load balancing strategy for

overloaded cloud partition. The overloaded load balancing strategy maintains two queues at overloaded condition. Priority queue is

used when the cloud partition status is idle and normal and non priority queue is used when partition status is overloaded. At

overloaded condition an overloaded partition scheduling algorithm is used for the allocation of jobs to Non priority queue. When a

priory job ends, then one of the jobs in Non priority queue moves to priority queue based on arrival time and processing power

required

Keywords: Cloud Partition, Job Splitting Index, Non priority queue, Overloaded partition, Priority queue

--***--

1. INTRODUCTION

Cloud computing is an emerging technology that brings many

changes to the IT industry. Cloud computing allow users to

take advantage from all these technologies, without deep

knowledge about or expertise with them. Load balancing

schemes depending on whether the system dynamics are

important can be either static or dynamic [1]. It is an

efficient solution that distributes excess workload evenly to

all nodes in cloud environment [2]. The load balancing model

is used for the public cloud having numerous nodes in

different geographic locations [3]. The model for such a

cloud computing environment leads to high cost when there is

an increase in number of nodes. It is also difficult for the

existing load balancing strategies to apply when the

environment is large and complex. So cloud partitioning is

chosen that divides the public cloud into several cloud

partitions by the random selection of nodes. The model

includes main controller and partition balancers to perform

load balancing solution. When the cloud partition status is

overloaded, cloud partitioning is repeated. It reduces the

working efficiency and expected response time of the system.

In the proposed load balancing strategy each node maintains

two queues Priority and Non-priority queue. It is a modified

approach of existing load balancing model. Priority queue is

used when the cloud partition status is idle or normal and Non

priority queue is used when partition status is overloaded. At

overloaded condition the jobs in idle and normal partition

status are moved to Priority queue and the jobs after

overloaded status are moved to non-priority queue. For the

better allocation of jobs at overloaded situation we propose an

overloaded partition scheduling algorithm. The main features

of our algorithm can be listed as follows:

 Minimum response time at overloaded situation

 Provides better fault tolerance

 Simplifies load balancing

The rest of the paper is organized as follows: In section II, we

survey related works of load balancing in cloud computing

environment. In section III we do the proposed work. In

section IV we do the performance analysis on our proposed

algorithm. Finally, in section V summarizes our findings and

concludes the paper.

2. RELATED WORK

Cloud computing has attracted considerable research attention,

but only a small portion of the work has been done so far.

There has also been much research in towards different styles

of load balancing. Here, we survey those that proposed certain

techniques and algorithms for load balancing in cloud

environment.

Martin Randles, David Lamb (2010)[4] investigates three

viable methods for load balancing. Firstly, nature-inspired

algorithms for achieving global load balancing. Secondly, load

balancing of all system nodes using random sampling of the

system domain. Thirdly, optimizes job assignment by

connecting similar services by local re-wiring.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 413

Kumar Nishant (2012)[5] proposed an algorithm for effective

distribution of workloads among the nodes of a cloud

environment by the use of Ant Colony Optimization (ACO).

This is a modified approach of ant colony optimization. The

ACO is used for load balancing. The main advantage of this

approach is the detection of overloaded and under loaded

nodes. Nidhi Jain Kansal (2012)[6] study the existing load

balancing techniques in cloud computing and further compares

them based on various parameters like performance, scalability,

associated overhead etc that are considered in different

techniques.

Shantanu Dutt (1993)[7] presents a very efficient graph

partitioning scheme that uses the basic strategy of the

Kernighan-Lin algorithm to swap pairs of nodes to improve an

existing partition of a graph G. The algorithm attempts to find a

partition of a set of nodes (V) into disjoint subset A, B of equal

sizes such that sum of the weights of the edges between nodes

in A and B is minimized. For that take the initial partition and

iteratively improve it. Vertex pairs with largest decrease or

smallest increase in cut size are exchanged. These vertices are

then locked. This process continues until all vertices are

locked.

Tarun Kumar (2012)[8] proposed Load Balanced Max Min

algorithm. The proposed algorithm outperforms Max-Min

because it focuses on minimizing the completion time of tasks.

The proposed algorithm is executed in two-phases. It uses the

advantages of Max- Min and covers its disadvantages by

reducing makespan and maximizing resource utilization.

Gaochao Xu (2013)[1] proposed a better load balancing model

for public cloud based on the cloud partitioning. The model

includes Main Controller and Balancers to perform load

balancing solution. The Main Controller selects the best cloud

partition and Balancers choose right load balancing strategy to

distribute the jobs to cloud partition. Here, the idle partition

status uses an improved Round Robin algorithm and the

normal status uses a Game theory based load balancing

strategy. When partition status becomes overloaded, cloud

partitioning is repeated. It reduces the working efficiency and

expected response time of the system

In reference to [1], we modified the load balancing model by

maintaining two queues at overloaded condition and use a

scheduling algorithm for the allocation of jobs in the way

mentioned below.

3. PROPOSED WORK

The load balancing model is used for the public cloud which

has numerous nodes in many different geographic locations.

The model for such a cloud computing environment leads to

high cost when there is an increase in number of nodes. It is

also difficult to apply the load balancing strategy when the

environment is very large and complex. So cloud partitioning is

chosen. Cloud partitioning divides the public cloud into several

cloud partitions by random selection of nodes. When the

environment is very large and complex, these divisions

simplify load balancing. The Load Balancing model includes

Main Controller and Balancers, performs the load balancing

solution. The Main Controller selects the best cloud partition

and Balancers choose right load balancing strategy to distribute

the jobs to cloud partition.

The load balancing model for public cloud using cloud

partitioning concept uses a switch mechanism to choose

different strategies during different situations. The idle status

uses an improved Round Robin algorithm and normal status

uses a game theory based load balancing strategy. When the

cloud partition state is overloaded, a random node is selected as

best node to perform the load balancing, cloud partitioning is

repeated. It reduces the working efficiency and expected

response time of the system. To overcome this issue we present

an approach to develop a novel load balancing strategy for

overloaded cloud partition.

3.1 Load Balancing Strategy for Overloaded

Partition

It is evident that the working efficiency of cloud computing

environment decreases when the cloud partition status is

overloaded. So a novel load balancing model is proposed to

avoid this problem by incorporating two queues. Figure 3.1

depicts the design of the cloud architecture for this approach.

According to this design each node maintains two queues,

Priority queue and Non priority queue. Priority queue is used

when the cloud partition status is idle or normal and Non

priority queue is used when partition status is overloaded.

When user submit job request job allocation is performed

either by load balancing approach or by scheduling algorithm.

When a new job arrives, if cloud partition status is idle or

normal then load balancing approach is used to select a best

node for executing the job. The load balancing approach uses

priority queue for all arriving jobs. The jobs assigned to the

nodes have the same priority and total CPU power is shared by

all the jobs in the queue. When the cloud partition status is

overloaded then queue is splitted into two. Then the jobs in idle

and normal partition status are moved to Priority queue and the

jobs after overloaded status are moved to non-priority queue. A

separate scheduling algorithm is used for this allocation to Non

priority queue.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 414

ARCHITECTURE OF THE SYSTEM

Fig 3.1 System Architecture

The overloaded load balancing model is a modified approach

of existing load balancing model. Fig 3.2 shows the overall job

assignment strategy for overloaded cloud partition. In this

model when a new job arrives the main controller chooses best

cloud partition for the arriving job. The cloud partition status is

then evaluated. When the partition status is idle and normal the

jobs are assigned to the nodes according to the existing load

balancing strategy. The Idle cloud partition status uses

improved round robin algorithm and Normal partition status

uses game theory based load balancing strategy.

When an overloaded condition occurs the existing model

selects a random node as best node to perform load balancing

and cloud partitioning is repeated. It reduces the working

efficiency and expected response time of the system. So

overloaded load balancing model is used to avoid this problem

by maintaining two queues, Priority and Non priority queue.

At overloaded condition the jobs in idle and normal cloud

partition are moved to Priority queue and the jobs after

overloaded status are moved to non-priority queue. A separate

overloaded partition scheduling algorithm is used for this

allocation to non priority queue. When a priory job ends, then

one of the jobs in non priority queue moves to priority based on

arrival time and processing power required. The modified job

assignment strategy for overloaded cloud partition is shown

below.

At overloaded condition node provides X% of its CPU power

to priority queue and 1-X% to Non priority queue. For example

if X=75% and if there are three jobs in priority queue then 75%

of CPU power is shared by all three jobs in priority queue.

Initially X=100% so there is no Non priority queue. When an

overloaded situation occurs, queue is splitted into two. The

node gradually increases CPU power in non priority queue and

decreases CPU power in priority queue i.e. node provides a

threshold of 75% CPU power to Priority queue and 25% to

jobs in Non priority queue. This threshold value is calculated

using overloaded partition scheduling algorithm. The main

benefit of the overloaded load balancing model lies in response

time and fault tolerance. It further improves the efficiency by

considering all the jobs at overloaded status.

Fig 3.2 Job assignment strategy for overloaded status

3.2 Scheduling Algorithm

Priority Queue

Non Priority Queue

Node

Load

Balancing

Scheduling

Algorithm

Job Allocation User
Submit Job

Request

End

Job arrive at Cloud

Partition Balancer

Assign jobs to nodes

according to strategy

Each node maintains two

queues

Job arrive at Main

Controller

Choose Cloud Partition

Cloud

Partition

State

Start

Jobs already in queue

moves to priority queue

Jobs after overloaded

moves to non priority

queue

Apply Scheduling algorithm

for allocation

Overloaded

Idle or normal

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 415

Scheduling algorithm is used for the allocation of jobs to non

priority queue when overloaded situation occurs. When cloud

partition status become overloaded, each node maintains two

queues Priority queue and Non priority queue. The priority

queue contains jobs when the cloud partition status is idle and

normal. Here the total CPU power is shared by all jobs and

equal priority is set for all jobs. When overloaded occurs queue

is splitted into two. The jobs already in the queue moves to

priority queue and jobs after overloaded condition moves to

non priority queue. Scheduling algorithm is used for this

allocation of jobs to non priority queue. In the scheduling

algorithm the jobs are splitted according to a threshold. The

threshold value is set as 75% and 25% for Priority queue and

Non priority queue when cloud partition status is overloaded.

At the initial stage 100% CPU power is shared by all the jobs

in priority queue. When overloaded occurs 95% CPU power is

given to jobs in priority queue and 5% CPU power is given to

jobs in non priority queue. As jobs in non priority queue

increases the CPU power given to them increases up to

threshold value of 25% and CPU power given to jobs in

priority queue decreases up to threshold value of 75%. The

threshold value is calculated using Job Splitting Index.

The Job splitting index is calculated for all the nodes in each

partition. Then calculate the average Job splitting index from

the node Job splitting index value.

When overload occurs the threshold value is set as 75% and

25% for jobs in priority and non priority queue respectively.

Allocation of job is done by selecting the best partition with

minimum average job splitting index value. For each partition

Pi select a partition if avg(Pi) < min. The selected partition is

then assigned to partition controller. At partition controller the

job is assigned to the node with minimum avg value.

Overloaded Partition Scheduling Algorithm

For each node i

For each partition Pi

Calculate Job splitting index of each node

Calculate the average Job splitting index for each partition Pi

1. Allocation of job at Main controller

Main controller chooses the best partition with min avg

Job splitting index value.

Min=α

For each partition Pi

If avg(Pi) < Min

Selected= Pi

End if

End for

2. Allocation of job at Partition controller

On arrival of job the partition controller allocate job to

the node with min Job splitting index value

4. PERFORMANCE ANALYSIS

The resulting load balancing model has been implemented and

a graph has been plotted. The graph 4.1 shows the comparative

performance of the response time of existing and overloaded

load balancing model, with the Y axis showing the effect of

improved response time on increased number of jobs in X axis.

This graph demonstrates that overloaded load balancing model

performs well as number of jobs increases. As the number of

jobs increases the proposed overloaded load balancing model

provides minimum response time.

100

90

80

70

60
Existing

50 Model

40 Proposed

30 system

20

10

0

100

12

5 150

17

5 200 225
25
0 300

50 75

Fig 4.1 Number of Jobs against Response time

The graph 4.2 shows the comparative performance of the fault

tolerance of existing and overloaded load balancing model,

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 416

with the Y axis showing the effect of improved fault tolerance

on increased number of jobs in X axis. The overloaded load

balancing model provides better fault toleranace when the

number of jobs increases.

30

25

20

15 Existing

10
 Model

 Proposed

5
 Model

0

75 100

12

5 150 175

20

0 225 250

30

0

50

Fig 4.2 Number of Jobs against Fault tolerance

From the graph plotted it is proved that our overloaded load

balancing model minimizes the load balancing in cloud

environment and there by increases overall performance of the

cloud system. The proposed model is fault tolerant when

number of jobs increases

5. CONCLUSIONS

This is a modified approach of load balancing model aimed at

the public cloud which has numerous nodes with distributed

computing resources in many different geographic locations

with the main aim of load balancing of nodes. The main benefit

of this approach lies in the development of a load balancing

strategy for overloaded cloud partition. When overloaded

condition occurs the jobs in idle and normal partition status are

moved to non-priority queue. An overloaded partition

scheduling algorithm is used for this allocation to Non priority

queue. When a priory job ends, then one of the jobs in Non

priority queue moves to priority based on arrival time and

processing power required.

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me

help to complete this project. A special thanks to my guide

Prof. P Mohamed Shameem, H.O.D., CSE, TKM Institute of

Technology. I am also thankful to staffs of the institution for

guiding and providing me superior computing facilities. Last

but not least I would like to thank almighty for making this

project a reality.

REFERENCES

[1] N. G. Shivaratri, P. Krueger, and M. Singhal, “Load

distributing for locally distributed systems”,

Computer,vol. 25, no. 12, 1992.

[2] B.P Rima, E.Choi, and I.Lumb, “A Taxonomy and

Survey of Cloud Computing Systems”, Proceedings of

5
th

 IEEE International Joint Conference on INC,IMS

and IDC,Seoul,Korea, 2009.

[3] B P Gaochao, “Load balancing model based on cloud

partitioning for the public cloud”, IEEE transactions on

cloud computing, 2013.

[4] M. Randles, D. Lamb, and A. Taleb-Bendiab, ” A

comparative study into distributed load balancing

algorithms for cloud computing”, IEEE 24
th

International Conference on Advanced Information

Networking and Applications, Perth, Australia, 2010

[5] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P.

Singh, N. Nitin, and R. Rastogi, “ Load balancing of

nodes in cloud using ant colony optimization” 14
th

International Conference on Computer Modelling and

Simulation (UKSim), Cambridge shire, United

Kingdom, 2012

[6] Nidhi Jain Kansal1, Inderveer Chana, “Cloud Load

Balancing Techniques: A Step Towards Green

Computing”, IJCSI International Journal of Computer

Science, 2012.

[7] Shantanu Dutt, “New Faster Kernighan-Lin-Type

Graph Partitioning Algorithms”, IEEE ,1993

[8] Tarun Kumar Ghosh, Rajmohan Goswami, “Load

Balanced Static Grid Scheduling Using Max-Min

Heuristic” , 2nd IEEE International Conference on

Parallel, Distributed and Grid Computing, 2012.

[9] Zehua Zhang, Xuejie Zhang, “A Load balancing

mechanism based on Ant colony and complex network

theory in Open Cloud Computing Federation”, 2
nd

International Conference on Industrial Mechanism and

Automation,2010.

[10] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, and C.

Mcdermid, “Availability and load balancing in cloud

computing”, International Conference on Computer

and Software Modeling, Singapore, 2011.

[11] Daniel Grosu, Anthony T.Chronopoulos,” A game

theoretic model and algorithm for load balancing in

distributed systems”, 16
th

 International Parallel and

Distributed Processing Symposium, 2002.

[12] Gowtham Gajala, “Cloud Computing: A State of Art of

the Cloud”, International Journal of Computer Trends

and Technology, 2013.

[13] Syed Tauhid Zuhori,Tamana Shamrin,Runia

Tanbin,Firoz Mahmud, “ An Efficient Load Balancing

approach in cloud environment by using Round Robin

algorithm” , International Journal of Artificial

Intelligence and Mechatronics, 2013.

[14] Rashmi K.S, Suma.V, Vaidehi.M, “Enhanced load

balancing approach to avoid deadlocks in cloud” ,

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 417

International Journal of Computer Application on

Advanced Computing and Communication

Technologies for HPC Applications, June 2012.

[15] Tejinder Sharma, Vijay Kumar Banga, “Efficient and

Enhanced Algorithm in Cloud Computing”,

International Journal of Soft Computing and

Engineering, March 2013.

[16] Marios D. Dikaiakos and George Pallis, Dimitrios

atsaros, Pankaj Mehra, Athena Vakali, “Cloud

Computing: Distributed Internet Computing for IT and

Scientifc Research”, IEEE 2009.

[17] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James

R. Larus, Albert Greenberg, “Join-Idle-Queue: A Novel

Load Balancing Algorithm for Dynamically Scalable

Web Services”.

[18] Rade Stanojevi´c, Robert Shorten, “Load balancing vs.

distributed rate limiting: a unifying framework for

cloud control”.

[19] Hao Liu, Shijun Liu, Xiangxu Meng, Chengwei Yang,

Yong Zhang, “LBVS: A Load Balancing Strategy for

Virtual Storage”, International Conference on Service

Sciences, 2010.

[20] Che-Lun Hung, Hsiao-hsi Wang and Yu-Chen Hu,

“Efficient Load Balancing Algorithm for Cloud

Computing Network”.

[21] Yi Zhao, Wenlong Huang, “Adaptive Distributed Load

Balancing Algorithm based on Live Migration of

Virtual Machines in Cloud”, Fifth International Joint

Conference on INC, IMS and IDC, 2009.

[22] Vlad Nae, Radu Prodan, Thomas Fahringer, “Cost-

Efficient Hosting and Load Balancing of Massively

Multiplayer Online Games”, IEEE 2010.

[23] Aameek Singh, Madhukar Korupolu, Dushmanta

Mohapatra, “Server-Storage Virtualization: Integration

and Load Balancing in Data Centers”.

[24] Shu-Ching Wang, Kuo-Qin, Wen-Pin Liao and Shun

Sheng Wang, “Towards a Load Balancing in a Three-

level Cloud Computing Network”, IEEE, 2010.

[25] Amandeep Kaur Sidhu, Supriya Kinger, “Analysis of

Load Balancing Techniques in Cloud Computing”,

International Journal of Computers & Technology,

April 2013.

[26] Jeffrey M. Galloway, Karl L. Smith, Susan S. Vrbsky,

“Power Aware Load Balancing for Cloud Computing”,

Proceedings of the World Congress on Engineering and

Computer Science, 2011.

[27] Yang Xu, Lei Wu, Liying Guo, Zheng Chen, “An

Intelligent Load BalancingAlgorithm towards Efficient

Cloud Computing”, AI for Data Center Management

and Cloud Computing: Papers from the AAAI

Workshop, 2011.

[28] Ratan Mishra and Anant Jaiswal, “Ant colony

Optimization: A Solution of Load balancing in Cloud”,

International Journal of Web & Semantic Technology

(IJWesT), April 2012.

[29] H K Sawant,Sachin Shelke, “A Non cooperative

approach for non cooperative load balancing in

distributed systems”, Journal of Information,

knowledge and Research in Information Technology.

[30] Md.Firoj Ali, Rafiqul Zaman Khan, “The Study on

Load Balancing Strategies in Distributed Computing

System”, International Journal of Computer Science

and Engineering Survey, April 2012.

