
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 375

ENHANCING MINIMAL VIRTUAL MACHINE MIGRATION IN CLOUD

ENVIRONMENT

Lidin Das
1
, P Mohamed Shameem

2

1
M.Tech Student, Dept. of CSE, TKM Institute of Technology, Kerala, India

2
Associate Professor, Dept. of CSE, TKM Institute of Technology, Kerala, India

Abstract
Virtualization is a popular solution that acts as a backbone for provisioning requirements of a cloud-based solution. And virtual

machine migration is key enabler for dynamic resource management in cloud-based systems. Live virtual machine migration transfers

the “state” of a virtual machine from one physical machine to another thereby can mitigate overloaded conditions and enables

uninterrupted maintenance activities. In this paper we will come across three main scenarios in virtual machine migration: when,

which and where to migrate. Main discussion area in this paper is the scenario, “where to migrate”, to choose the destination node to

which virtual machine get migrated. A bad choice would lead to a cascade in migration and thereby will create a cyclic effect. So we

have to select the better node in order to minimize further migration. For this, we propose a MVMM algorithm to minimize the virtual

machine migration.

Keywords: Cloud Computing, Hot Spot, Live Migration, Virtualization, Virtual Machine

---***--

1. INTRODUCTION

Cloud computing [1] provides a “computing-as- a-service”

model in which compute resources are made available as a

utility service — an illusion of availability of as much

resources (e.g., CPU, memory, and I/O) as demanded by the

user. Moreover, cloud users pay only for the amount of

resources (a “pay-as-use” model) used by them. This model is

different from earlier infrastructure models, where enterprises

would invest huge amounts of money in building their own

computing infrastructure. Generally, traditional data centers

are set to meet the peak demand, which results in wastage of

resources during non- peak periods. To mitigate the above

problem, modern-day data centers are shifting to the cloud.

However, implementing cloud-based data centers requires a

great deal of flexibility and agility. For example, the dynamic

scaling and shrinking requirement needs compute resources to

be made available at very short notice. When computing

hardware is overloaded, it may be required to dynamically

transfer some of its load to another machine with minimal

interruption to the users. Virtualization technology can

provide these kinds of flexibilities.

We discuss the use of virtual machine migration [2] for

dynamic resource management in virtualized-based cloud

systems. As mentioned earlier migration is the process of

transferring state of a virtual machine (VM) from one physical

machine (PM) to another. Different techniques of migration

exits such as suspend-and-copy, pre- copy and post-copy. In

suspend-and-copy virtual machine is suspended and copies all

its pages and resumes at the destination machine. In pre-copy

method it transfers all its pages to the destination without

suspending the virtual machine. Once all the necessary pages

are transferred VM at the source is suspended and resumes at

the new source (destination). Live migration aim to minimize

the downtime of virtual machine either by transferring pages

before the machine gets suspended or copying minimal state

(post-copy) to start the VM and using demand-paging over the

network to fetch the remaining state.

In the current cloud computing environments, VM resource

scheduling only considers the current system condition and

ignores the previous state of system which causes the system

load imbalance. Number of VM migrations is more when most

of the load balancing takes place. The entire migration cost

becomes a problem when most of the VMs are migrated. So

it’s necessary to minimize the migration of VMs so that we

could radically improve the performance of the entire system

and saves a much amount of migration cost. So our proposed

prediction algorithm provides a solution to the mentioned

problem and also embraces multiple aspects and provides an

insight into their interactions of today’s cloud centers. The

main features of our algorithm can be listed as follows:

 Resource usage statics of each VM;

 Predicting job completion time;

 Cascading in migration in avoided;

 Minimizes overloading conditions;

The rest of the paper is organized as follows: In section 2, we

survey related work in dynamic resource allocation and live

migration in cloud computing environment. In section 3 we

will discuss about the proposed system. In section 4 we do the

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 376

performance analysis on our proposed algorithm. Finally, in

section 4 summarize our findings and conclude the paper.

2. RELATED WORK

Cloud computing has attracted considerable research attention,

but only a small portion of the work has been done so far.

Many research works carried out in the field of resource

allocation and migration. Here, we survey those that proposed

certain methods and models for migration and resource

allocation.

In [3], the authors studied about resource allocation

mechanism that takes place in VM-based data centers. Here

they introduce two-tiered on demand resource allocation

mechanism that differs from traditional resource allocation

mechanisms in adding resource management level for VMs.

They proposed on demand resource allocation algorithms and

models to make resource allocation more dynamic. But they

didn’t mention any method to reduce the overloading

condition in virtual machines.

In [4], discusses about the framework that is used in managing

the clusters of virtual machines. Even though it implements

basic management mechanisms such as creating, destroying,

and migrating virtual machines, it doesn’t mention any method

how to minimize the migration of virtual machines.

In [5] and [6], author’s mentions about the priority based

resource allocation and threats that exits in virtual migration

respectively. [7] discusses the design options for migrating

OS’s running services with liveness constraints, focusing on

data center and cluster environments. Author’s discusses in

detail about the different phases in virtual machine migration.

In [8], author discusses about the dynamic resource allocation

in cloud environment by using VM migration. They present a

system that use virtualization technology to allocate data

center resources dynamically based on application demands

and support green computing by optimizing the number of

servers used. It explains about the situation in which VM get

migrated. A VM is migrated when there is hot spot detection.

A server is defined as a hot spot when its resource utilization

is above a hot threshold value. This indicates that server is

overloaded and some of its VMs running on it should be

migrated away.

As can be seen, no reported works covers the aspect of

minimizing the VM migration. This has motivated us to

develop a new algorithm to choose the destination node

(server) in such a way that there won’t be any cascade in

migration. In reference to [8], we also modified the algorithm

that to decide when to migrate and which VM to migrate in

the way mentioned below.

3. PROPOSED WORK

3.1 When to Migrate

There are many situations when migration of VMs becomes

necessary to maintain the overall efficiency of the data center.

These situations can be hot spot, periodic, load imbalance, and

addition of VMs. We are considering the situation of hot spot

over here. As we discussed earlier a server is said to be hot

spot if its resource utilization is above a threshold value. Let

that threshold value be HT. Now for every node, Ni, we need

to find the load of each node and let it be L(Ni). Let the total

sum of loads be SL. Now we will calculate the average of

loads present in all nodes and introduce another factor called

hot spot factor (α). Based on average value and hot spot factor

we determine the threshold value. So nodes with loads greater

than the threshold value will be considered as hot spot nodes.

Step by step algorithm is shown below.

Algorithm

 For each node Ni find load of Ni, i.e. Find L(Ni);

 Set SL=0, α be hot spot factor with value 1.2;

 For each node Ni do the following;

 SL=SL+L(Ni);

 Average (avg)=SL/Ni;

 HT=α * avg; end for;

 For each node Ni repeat up to step 9;

 If L(Ni) > HT then proceed to next step;

 Mark the node as hot spot node; end for;

It is not necessary that all hot spot nodes need to migrate. We

will perform the following algorithm on hot spot nodes to

determine which node to migrate.

3.2 Which to Migrate

Selecting one or more VMs for migration is a crucial decision

of the resource management heuristics. The migration process

not only makes the VMs unavailable for a period of time but

also consumes resources like network, CPU on source and

destination server. So it is important to make the correct

decision in choosing which VM to migrate.

Here we would consider only those nodes that are hot spot

nodes. Let HN be the list of hot spot nodes. A node or VM is

not considered for migration if it is already a migrated one.

Here in this algorithm we setup a three threshold values such

as threshold-input-length (TIL), min-threshold-input-length

(MTIL) and threshold time T. For every node or VM in HN

we consider both the total balance input and processed input

percentage. We select those nodes or VM with balance input

greater than the TIL value and processed input lengths less

than MTIL for migration. Step by step algorithm is shown

below.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 377

Algorithm

 Initially set values to TIL, MTIL and threshold time T;

 If current-last-migration time > T then go to next step;

 For every node in HN do the following;

 If node (i) not migrated go to next step;

 If balance input (i) > TIL go to next step;

 If processed input percentage (i) < MTIL go to next

step;

 Select the node (i) for migration; end for;

3.3 Where to Migrate

During migration destination PM should have enough

resources so that it can support incoming migrating VM. Here

we will discuss about the MVMM algorithm used to select the

destination for migrating VMs. The core part of MVMM

algorithm depends upon a VM allocation matrix (VA). So let’s

see VA matrix in detail.

In VA matrix each column represents VMs in the order of job

completion time. This completion time can be calculated on

the basis of speed at which each job on the VMs is processed.

Each row of VA matrix represents the number of PMs in the

entire system. Each value in matrix, say VA[i][j], represents

the number of loads pending in PM[i] when VM[j] terminates.

Now we will find the HT value using the same method

mentioned in the algorithm when to migrate. Now we find the

number of overloaded nodes on the basis of HT value for each

column in VA matrix. We repeat this step for every column

and calculate the sum of all overloaded nodes and are set as

Migrating Index (MI) value. This MI value plays a pivot role

in MVMM algorithm.

The above mentioned VA matrix can be explained with an

example. Let VM1, VM2, VM3 and VM4 represents virtual

machines in the column of the matrix and is in the order of job

completion time. Let PM1, PM2 and PM3 represents the

physical machines in the rows of VA matrix.

Table -1: VA matrix

Each value in matrix represents the number of loads pending

in each PMs. Here the HT value at the time of termination

VM1 is 3.6 (HT=avg * α). Here the avg = 3 ((2+4+3)/3) and

value of α is set as 1.2. So at the time VM1 terminates number

of nodes that exceeds the HT value is 1. This value is set in the

last row.

Now let’s see how algorithm works. Let P1, P2.., Pn be the

nodes (PM) present in the system. Let MV be the virtual

machine to migrate. For each node Pi, let’s assume that MV is

allocated to node Pi. Now we find the Migration Index (MI)

value for every allocation using VA matrix. After calculating

all the MI values, we find the node Pi with minimum MI

value. So we allocate MV to that node. Hence in following

this algorithm we could minimize the migration of VMs. Step

by step algorithm is shown below.

MVMM Algorithm

 Let P1, P2,…,Pn be the nodes(PM);

 MV is the VM to migrate;

 For each node Pi, assume MV is allocated to Pi;

 Calculate Migration Index (MI);

 End for;

 Allocate MV to node with minimum MI value;

4. PERFORMANCE ANALYSIS

The resulting algorithms have been implemented and a graph

has been plotted. From the table 1, it is clear that Migration

Index (MI) is a measure of future migration. And our

algorithm considers a different allocation sequence and finally

select sequence with minimum MI. But in the case of

algorithms used in previous works select any of sequence

without considering MI. So as the number of VMs increases

there is a drastic increase in migration using normal migration

algorithms that leads to a situation that we cannot manage it.

But in our algorithm, migration increases only linearly with

increase in VMs.

From the graph plotted it is proved that our MVMM algorithm

minimizes the virtual machine migration in cloud environment

and there by increases overall performance of the cloud

system.

 VM1 VM2 VM3 VM4

PM1 2 3 1 2

PM2 4 2 3 3

PM3 3 3 1 4

HT 3.6 3.2 2 3.6

No: of

overloaded

nodes

1 0 1 1 MI=3

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 378

Fig -4: Performance comparison graph

5. CONCLUSIONS

In this position paper, we present a novel approach to

minimize virtual machine migration in cloud computing

environment. Our modified approach reduces migration

overhead up to 75% and the above graph plotted is a proof for

that. We only concentrate on minimizing VM migration and

eliminate starvation. But we are not considering time

complexity factor of our algorithm MVMM

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me

help to complete this project. A special thanks to my guide

Prof. P Mohamed Shameem, H.O.D., CSE, TKM Institute of

Technology.

I am also thankful to staffs of the institution for guiding me

and providing me superior computing facilities. Last but not

least I would like to thank almighty for making this project a

reality.

REFERENCES

[1] M. Armbrust et al., “A view of Cloud Computing,”

Commun. ACM, vol. 53, no. 4, 2010, pp.50-58.

[2] Michael Nelson, “Fast Transparent Migration for

Virtual Machines.” 2005

[3] Ying Song et al., “A Two- Tiered On- Demand

Resource Allocation Mechanism for VM-Based Data

Centers”. 2013 IEEE

[4] M. McNett, D. Gupta, A. Vahdat, and G.M. Voelker,

“Usher: An Extensible Framework for Managing

Clusters of Virtual Machines,” Proc. Large Installation

System Administration Conf. (LISA ’07), Nov. 2007.

[5] Chandrasekhar S. Pawar and Rajnikant B. Wagh,

“Priority Based Dynamic resource allocation in Cloud

Computing,”

[6] Jon Oberheide, Evan Cooke, and Farnam Jahanian, “

Emperical Exploitation of Live Virtual Machine

Migration,”.

[7] Christopher Clark. 2005 “Live Migration of Virtual

Machines”. Proc. Symp. Networked Systems Design

& Implementation.

[8] Zhen Xiao, Weijia Song, and Qi Chen, “Dynamic

Resource Allocation Using Virtual Machines for Cloud

Computing Environment”. 2013 IEEE

[9] T. Wood, P. Shenoy, A. Venkataramani, and M.

Yousif, “Black-Box and Gray-Box Strategies for

Virtual Machine Migration,” Proc. Symp. Networked

Systems Design and Implementation (NSDI ’07), Apr.

2007.

[10] C.A. Waldspurger, “Memory Resource Management in

VMware ESX Server,” Proc. Symp. Operating Systems

Design and Implementation (OSDI ’02), Aug. 2002.

[11] G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L. Xiao,

and F. Zhao, “Energy-Aware Server Provisioning and

Load Dispatching for Connection-Intensive Internet

Services,” Proc. USENIX Symp. Networked Systems

Design and Implementation (NSDI ’08), Apr. 2008.

[12] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic

Placement of Virtual Machines for Managing SLA

Violations,” Proc. IFIP/IEEE Int’l Symp. Integrated

Network Management (IM ’07), 2007.

[13] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat,

and R.P. Doyle, “Managing Energy and Server

Resources in Hosting Centers,” Proc. ACM Symp.

Operating System Principles (SOSP ’01), Oct. 2001.

[14] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A

Scalable Application Placement Controller for

Enterprise Data Centers,” Proc. Int’l World Wide Web

Conf. (WWW ’07), May 2007.

[15] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz,

and I. Stoica, “Improving MapReduce Performance in

Heterogeneous Environments,” Proc. Symp. Operating

Systems Design and Implementation (OSDI ’08), 2008.

[16] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K.

Talwar, and A. Goldberg, “Quincy: Fair Scheduling for

Distributed Computing Clusters,” Proc. ACM Symp.

Operating System Principles (SOSP ’09), Oct. 2009.

[17] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,

S. Shenker, and I. Stoica, “Delay Scheduling: A Simple

Technique for Achieving Locality and Fairness in

Cluster Scheduling,” Proc. European Conf. Computer

Systems (EuroSys ’10), 2010.

[18] T. Sandholm and K. Lai, “Mapreduce Optimization

Using Regulated Dynamic Prioritization,” Proc. Int’l

Joint Conf. Measurement and Modeling of Computer

Systems (SIGMETRICS ’09), 2009.

[19] A. Singh, M. Korupolu, and D. Mohapatra, “Server-

Storage Virtualization: Integration and Load Balancing

in Data Centers,” Proc. ACM/IEEE Conf.

Supercomputing, 2008.

[20] Y. Toyoda, “A Simplified Algorithm for Obtaining

Approximate Solutions to Zero-One Programming

Problems, Management Science, vol. 21, pp. 1417-

1427, Aug. 1975.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 379

[21] R. Nathuji and K. Schwan, “Virtualpower: Coordinated

Power Management in Virtualized Enterprise

Systems,” Proc. ACM SIGOPS Symp. Operating

Systems Principles (SOSP ’07), 2007.

[22] D. Meisner, B.T. Gold, and T.F. Wenisch, “Powernap:

Eliminating Server Idle Power,” Proc. Int’l Conf.

Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’09), 2009.

[23] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl,

and R. Gupta, “Somniloquy: Augmenting Network

Interfaces to Reduce Pc Energy Usage,” Proc. USENIX

Symp. Networked Systems Design and Implementation

(NSDI ’09), 2009.

[24] T. Das, P. Padala, V.N. Padmanabhan, R. Ramjee, and

K.G. Shin, “Litegreen: Saving Energy in Networked

Desktops Using Virtualization,” Proc. USENIX Ann.

Technical Conf., 2010.

[25] Y. Agarwal, S. Savage, and R. Gupta, “Sleepserver: A

Software- Only Approach for Reducing the Energy

Consumption of PCS within Enterprise Environments,”

Proc. USENIX Ann. Technical Conf., 2010.

[26] N. Bila, E.d. Lara, K. Joshi, H.A. Lagar-Cavilla, M.

Hiltunen, and M. Satyanarayanan, “Jettison: Efficient

Idle Desktop Consolidation with Partial VM

Migration,” Proc. ACM European Conf. Computer

Systems (EuroSys ’12), 2012.

