
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 162

GEO DISTRIBUTED PARALLELIZATION PACTS IN MAP REDUCE

FRAMEWORK IN MULTIPLE DATACENTER

C.Kirubanantham
1
, C.Rajavenkateswaran

2

1
Student, computer science engineering, Nandha College of Technology, India

2
Assistant professor, Information Technology, Nandha College of Technology, India

Abstract
MapReduce framework in Hadoop plays an important role in handling and processing big data. Hadoop is scalable that is it can

reliably store and process petabytes. MapReduce works by dividing input files into chunks and processing these in a series of

parallelizable steps. MapReduce framework offers a response to the problem by distributing computations among large sets of nodes.

we concentrate on geographical distribution of data for sequential execution of MapReduce jobs to optimize the execution time. The

fixed execution strategy of MapReduce program is not optimal for many task and as it does not know about the behavior of the

functions. Thus, to overcome these issues, we are enhancing our proposed work with parallelization contracts. The parallelization

contracts include input and output contract which includes the constraints and functions of data execution. These contracts help to

capture a reasonable amount of semantics for executing any type of task with reduced time consumption.

Keywords— Bigdata, Datacenter, Geo-distributed, Hadoop, MapReduce, PACT

--***---

1. INTRODUCTION

Data comes from many sources such as social media websites,

sensors to gather climate information, trajectory information,

transaction records, other web site usage data etc. it is called

Big data. The limits to what can be done are often times due to

how much data can be processed in a given time-frame. Paral-

lelization contract framework have become one of the toolkit

for processing large datasets using cloud computing resources,

and are provided by most cloud vendors. GEO-PACT, a system

for efficiently processing geo-distributed big data GEO-PACT

is a Hadoop based framework that can efficiently perform a

sequence of Parallelization Contracts jobs on a geo-distributed

dataset across multiple datacenters. Sequences of Paralleliza-

tion Contracts jobs are executed on a given input by applying

the first job on the given input, applying the second job on the

output of the first job, and so on. GEO-PACT acts much like

the atmosphere surrounding the clouds. The problem of execut-

ing geo-distributed Parallelization Contracts job sequences as

arising in “cloud of clouds” scenarios is analyzed for job ex-

ecution. Executing individual Parallelization Contracts jobs in

each datacenter on corresponding inputs and then aggregating

results is defined as multiple execution path. The datacenter

with optimized execution path is selected for job execution.

2 HDFS

The Hadoop Distributed File System (HDFS). Provides redun-

dant storage for massive amounts of data using inexpensive

commodity hardware and serves as the large scale data storage

system. The NameNode splits large files into fixed sized data

blocks which are scattered across the cluster. Typically the data

block size for the HDFS is conFigd as 64MB, but it can be

conFigd by file system clients as per usage requirements. The

data storage is of type write once/read many (WORM) and

once written, the files can only be appended and cannot be

modified to maintain data coherency. Since HDFS is built on

commodity hardware, the machine fault rate is high. In order to

make the system failure tolerant, data blocks are replicated

across multiple DataNodes.

2.1 NameNode

NameNode is important for HDFS to store its metadata relia-

bly. Furthermore, while the file data is accessed in a write once

and read many model, the metadata structures (e.g., the names

of files and directories) can be modified by a large number of

clients concurrently. It is important that this information is

never desynchronized. Therefore, it is all handled by a single

machine, called the NameNode. The NameNode stores all the

metadata for the file system. Because of the relatively low

amount of metadata per file (Information about file locations in

HDFS, Information about file ownership and permissions,

Names of the individual blocks, Locations of the blocks of

each file), all of this information can be stored in the main

memory of the NameNode machine, allowing fast access to the

metadata.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 163

Fig 1.1 HDFS Architecture

2.2 Secondary NameNode

The Secondary NameNode is not a failover NameNode and it

performs memory-intensive administrative functions for the

NameNode. Secondary NameNode should run on a separate

machine in a large installation. The secondary name-node is to

perform periodic checkpoints. The secondary name-node pe-

riodically downloads current name-node image and edits log

files, joins them into new image and uploads the new image

back to the (primary and the only) name-node. If the name-

node fails and it will restart on the same physical node then

there is no need to shutdown data-nodes, just the name-node

need to be restarted. If the old node cannot use anymore you

will need to copy the latest image somewhere else. The latest

image can be found either on the node that used to be the pri-

mary before failure if available; or on the secondary name-

node.

2.3 DataNode

A DataNode is a storage server that accepts read/write requests

from the NameNode. DataNodes store data blocks for local or

remote clients of HDFS. Each data block is saved as a separate

file in the local file system of the DataNode. The DataNode

also performs block creation, deletion and replication as a part

of file system operations. For keeping the records up-to-date,

the DataNode periodically reports all of its data block informa-

tion to the NameNode. DataNode instances can talk to each

other for data replication. To maintain its live status in the clus-

ter, it periodically sends heartbeat signals to the NameNode.

When the NameNode fails to receive heartbeat signals from the

DataNode, it is marked as a dead node in the cluster.

3. GEO-DISTRIBUTION

Applications on cloud environment are geographically distri-

buted, for the reasons: to access data frequently; data’s are col-

lected and stored by different organizations to shared towards a

common goal; datasets are replicated across datacenters for

availability. Geo-PACT is a Hadoop-based system that can

efficiently process concurrent jobs on a geographically distri-

buted dataset.

Consider n datacenters, given by DC1, DC2…DCn with input

sub datasets I1, I2,…,In respectively. The total amount of input

data is thus |I|=
n

i=1|Ii|. The bandwidth between the datacenters

DCi and DCj (i!= j) is given by Bi,j and the cost of transmitting

one unit of data between two datacenters is Ci,j. We define an

initial minimum partition size of input dataset to be transferred

across datacenters. On this geo-distributed input dataset se-

quence of jobs J1, J2,…Jn have to be executed. In each job

parallelization contract (PACTs) is applied. PACTS consist of

input and output contract. Input contract consist of five con-

tracts and output contract may be optional.

4 THE PACT PROGRAMMING MODEL

The PACT Programming Model is an extension of map/reduce

programming model. It operates over a key/value couple data

model so called Parallelization Contracts (PACTs). Following

the PACT programming model, programs are implemented by

providing task specific user code (the user functions, UFs) for

selected PACTs and assembling them to a work flow. A PACT

defines properties on the input and output data of its associated

user function. Figure 2 shows the parts of a Parallelization

Contracts, contains only one Input Contract and an optional

Output Contract. The Input Contract of a Parallelization Con-

tracts designates how the user function can be evaluated in

parallel. Optional output Contracts allow the optimizer to infer

certain properties of the output data of a user function and to

create a more efficient execution strategy for a program.

Fig 4.1 PACT Components

4.1 The Map Input Contract

The Map contract is used to process each key/value couple

independently; the Map input contract states that the user code

is invoked only once for each key-value couple of the input

data set.

Fig 4.2 Map Input Contract

Data
access

Client app

Name node

Secondary
name node

Data node Data node Data node

Metadata request

Independent
subset

User code
First-
order
function

Output
contract

Output
data

Value

Key

Input
data

Value

Key

Input
data

Independent
Invocations
of user code

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 164

4.3 The Reduce Input Contract

PACT Reduce input contract, in which all key-value couple of

a PACTs input data are grouped with an identical key. The user

code is attached to the Reduce contract is invoked for each of

these groups independently.

Fig 4.3 Reduce input contract

4.4 The Cross Input Contract

Multi-input contracts is the Cross input contract. The user code

attached to those multi-input contracts expects to receive data

from two specific data sources as input. Multi-input contracts

also construct the subsets for the user code based on two dif-

ferent input set and builds the Cartesian product of the two

inputs. All couple in the Cartesian product are then processed

independently by separate calls of the user code.

Fig 4.4 Cross input contract

4.5 The CoGroup Input Contract

CoGroup input contract, which is also a multi-input contract.

Independent subsets are built by joining the groups with same

keys of all inputs. The key/value couple of all inputs with the

same key are assigned to the same subset.

Fig 4.5 Cogroup input contract

4.6 The Match Input Contract

The Match input contract is a multiple input contract. All com-

binations of key-value couples with same keys are built in the

input data sets. After all groups are processed independently by

separate invocations of the attached user code. The Match in-

put contract performs equi-join on the key.

Fig 4.6 Match input contract

4.7 The PACT Output Contracts

Output Contracts are capable to declare indisputable properties

of user functions to maximize the efficiency of the task execu-

tion. An example of such an output contract is the SameKey

contract. When attached to a Map function then the user code

will not change the key, i.e. the type and value of the key re-

main after the user code’s invocation and are the same in the

output as in the input. Those references can be used by an op-

timizer that to generates parallel execution plans. The men-

tioned SameKey contract can frequently help to avoid unneces-

sary repartitioning and therefore expensive data shipping.

Hence, Output Contracts can significantly improve the runtime

of a PACT program.

5. OPERATION

On given geo-distributed input dataset, a sequence of opera-

tions is performed. In the following we focus on parallelization

contracts jobs J1 , J2 , ..., J m giving rise to a sequence of 5xm

Value Key

Input
data A

Value

Key

Independent
Invocations
of user code

Input data B
Value
 Key

Independent
Invocations
of user code

Input
data

Value

Key

Input data B

Independent
Invocations
of user code

Value

Key

Input
data A

Value

Key

Independent
Invocations
of user code

Input
data A

Val-
ue

Key

Input data B Value

Key

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 165

operations. Since each parallelization contracts job consists of

five major phases/operations (map, cross, match, cogroup, re-

duce). We define the state of data before a phase as a

stage identified by 0..5m. So input data is in stage 0 and final

output data received after applying MapReduce jobs 1...m is in

stage 5m.

To move data from stage s to next stage s + 1 a paralleli-

zation contracts phase is applied to data partitions and the same

number of (output) data partitions are created. The initial kth

partition of data is denoted by Pk0, and Pks represents the out-

put after executing parallelization contracts phases 1..s on par-

tition Pk0. Before performing a MapReduce phase, a partition

present in a datacenter may be moved to another datacenter. To

make our solution tractable we only allow full partitions of

data to be copied. The move may be for an initial partition or a

derivative of it received after executing one or more paralleli-

zation contracts phases. Initial partition sizes can be used as

parameter to trade accuracy and computation costs.

In this section executing sequence of parallelization contracts

on given input datasets. One of the main execution path is mul-

tiple execution path. Execution path for executing individual

parallelization contracts in each datacenter on given sub data-

sets and aggregating result from that datacenter is called mul-

tiple execution path. Aggregating result is not done automati-

cally in a datacenter hence indexed aggregators are used. Mov-

ing a data partition from one datacenter to another is costly

since this involves copying data across inter-datacenter links

from one distributed file system to another. If a partition Psk is

copied from DCi to DCj at stage s, this partition should not be

copied back to DCj to DCi at s+1 stage and also not copied

within same stage. Input sub-datasets are replicated across da-

tacenters, by taking exactly one replica of each of the input

sub-datasets.

5.1 Architecture

GEO-PACTs consist of single group manager in only one data-

center and job manager is deployed in every participating data-

center. Group manager finds the execution path and each job

manager in datacenter manage phase of parallelization contract

jobs that executed within datacenter using Hadoop cluster. Job

manager contains two components which are copy manager

and aggregation manager. Copy manager manage copying data

from one datacenter to another and aggregation manager man-

age the aggregation of result copied from different datacenter.

Data center configuration file describe about the datacenter

which have to be participate in geographically distributed pa-

rallelization contracts jobs handled by geo-pacts. Identification

is provided to each datacenter to identify when it is running

parallelization contracts. Datacenters store their data in Hadoop

distributed file system.

Fig 5.1 Architecture of GEO-PACT

Geographically distributed parallelization contracts jobs se-

quences are submitted to the Group manager through a job

configuration file. Group manager breaks the job sequence into

a number of tasks and this information is informed to Job man-

ager components copy manager and aggregation manager to

describe the portion of task that should be performed within

corresponding datacenters. User can specify sub dataset of

geographically distributed input dataset through a xml based

job configuration file.

Once the group manager starts its execution in multiple execu-

tion paths it instructs each job manager about the paralleliza-

tion contracts jobs that should be executed in corresponding

datacenter and the respective sub-datasets those parallelization

contracts jobs should be executed on. Job managers execute the

jobs using the Hadoop clusters deployed in corresponding da-

tacenters. The Group manager informs a Job manager to copy

data to a corresponding datacenter or aggregate multiple sub

datasets copied from two or more corresponding datacenters. A

Job manager use local Copy manager and Aggregation manag-

er to execute these tasks.

When ever a copy operation has to be performed, Copy man-

ager in the datacenter from where the data has to be copied

from and reads data from the corresponding HDFS storage and

sends data to the Copy manager located in the datacenter to

which data has to be copied, to through a TCP stream. The

Copy manager in the receiving side stores this data in the cor-

responding HDFS distributed storage. GEO-PACT uses aggre-

gators to aggregate the results obtained from parallelization

contracts jobs in parts of the input. Once output data generated

in one or more datacenters is copied to a single destination

Job execu-

tion

Group Manager
DC config file Job config file

Copy manager Aggregation manager

Job Managers

Datacenters

Name Node Job tracker

Hadoop Cluster
 Job execution

Data
node

Data
node

Task
Tracker

Task
Tracker

Job
execution

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 166

datacenter, the Group manager instructs the Job manager run-

ning in the destination datacenter to initiate an aggregate op-

eration.

6. DATACENTER ARCHITECTURE

Parallelization contract style computation systems have a min-

imum network bandwidth to move the data to the computation,

instead of the computation must move to the data. In datacen-

ter, compute nodes and storage nodes are attached to same

network switch. Compute node contains central processing unit

and network interface, and storage node contains disk to store

data. Instead of co-locating storage and computation in the

same box as in the traditional MapReduce storage architecture,

this design co-locates storage and computation on the same

Ethernet switch. The advantages of using remote disks in a

datacenter are many. First, both computation node and storage

node can be modified to meet the application requirements

during both cluster construction and operation. Second, com-

putation node and storage node can be decoupled from each

other when they went to failure. It avoids wasted resources that

would have been used to reconstruct lost storage when a com-

putation node fails.

Third, fine-grained power management techniques can be used,

whereby compute and storage nodes are enabled and disabled

to meet current application requirements. Finally, because

computation is now an independent resource, a mix of both

high and low power processors can be implemented. The run-

time environment managing application execution can change

the processors being used for a specific application in order to

meet administrative power and performance goals.

Fig 6.1 Remote Storage Architecture

7. FAILURE HANDLING

The Group manager must start in a trustworthy datacenter.

Each Job manager frequently sends a heartbeat message back

to the Group manager. If the Group manager does not receive a

heartbeat from a corresponding Job manager for some time, a

new Job manager is started in the same datacenter. If the Group

manager receives a late heartbeat message from the old Job

manager after starting the new Job manager, a message is sent

back to the old Job manager to quit itself. Once a Job manager

starts a parallelization contracts job it stores information about

this job in a predefined location of the distributed file system in

its datacenter so that a newly started Job manager can catch up.

Failure of a Group manager will result in the failure of the

GEO-PACT instance similar to the termination of the Job

Tracker component of Hadoop.

8 CONCLUSIONS AND FUTURE WORK

This paper presents Geo-Pact, a extension of MapReduce

framework that can efficiently execute a sequence of jobs on

geographically distributed datasets. Minimizing either execu-

tion time or cost. GEO-PACTS can substantially improve time

or cost of job execution compared to naive schedules of cur-

rently widely followed deployments. This framework is also

applicable to single datacenters with non uniform transmission

characteristics, such as datacenters divided into zones or other

network architectures. Future work is to form clusters from the

final result and with this analyzed data can be retrived are more

efficiently.

REFERENCES

[1] Agarwal S, Dunagan J, Jain N, Saroiu S, Wolman A,

and Bhogan H, “Volley: Automated Data Placement for

Geo-Distributed Cloud Services,” in National Spatial

Data Infrastructure, 2010.

[2] Alexander Alexandrov, Stephan Ewen, Max Heimel,

Fabian Hueske, Odej Kao, Volker Markl, Erik Nijkamp,

Daniel Warneke, “MapReduce and PACT - Comparing

Data Parallel Programming Models”.

[3] Apache Software Foundation, “Hadoop”,

http://hadoop.apache.org.

[4] “Big data”,

http://www.emc.com/campaign/bigdata/index.html

[5] ChamikaraJayalath, Julian Stephen, and Patrick Eugster,

“From the Cloud to the Atmosphere: Running MapRe-

duce across Datacenters”, IEEE Transactions on Com-

puters Special Issue On Cloud Of Clouds Volume 63,

issue 1, pages 74-87, May 2013.

[6] Data from Year 2000 US Census”,

http://aws.amazon.com/datasets/Economics/2290.

[7] Dean J and Ghemawat S, “MapReduce Simplified Data

Processing on Large clusters”, in Operating Systems

Design and Implementation, 2004.

[8] Dean J and Ghemawat S, “MapReduce Simplified Data

Processing on Large Clusters”, in Operating Systems

 Rack uplink LAN (Ethernet)

Storage Node 1 Storage Node m

Network disk
controller

Disk

Network disk
controller

Disk

Compute Node m

Network interface

CPU/Memory

Compute Node1

Network interface

CPU/Memory

Network switch

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 07 | May-2014, Available @ http://www.ijret.org 167

Design and Implementation, pages 137–150, 2004.

[9] Dejun J, Pierre D, and Chi C, “EC2 Performance Analy-

sis for Resource Provisioning of Service-Oriented Ap-

plications”, in International Conference on Service

Oriented Computing, 2009.

[10] Fushimi S, Kitsuregawa M, and Tanaka H, “An Over-

view of The System Software of A Parallel Relational

Database Machine GRACE”, Very Large Data Base,

pages 209–219, Morgan Kaufmann, 1986.

[11] “Hadoop the Definitive Guide”,

http://oreilly.com/catalog/ 9780596521981

[12] “Hadoop”, http://hadoop.apache.org/index.html

[13] “HDFS”,

http://developer.yahoo.com/hadoop/tutorial/module2.ht

ml

[14] Introduction to Analytics of Big Data and Hadoop”,

Storage Networking Industry Associa-

tion,http://www.snia.org/sites/default/files2/ABDS2012/

Tuto-

rials/RobPeglarIntroduction_Analytics%20_Big%20Dat

a_Hadoop.pdf

[15] Introduction to hadoop mapreduce”,

http://developer.yahoo.com/hadoop/tutorial/module4

[16] Jeffrey Shafer, Scott Rixner, Alan L. Cox Rice Universi-

ty “Datacenter Storage Architecture for MapReduce

Applications”.

[17] Lloyd W, Freedman M J, Kaminsky M, and Andersen D

J, “Don’t Settle for Eventual: Scalable Causal Consis-

tency for Wide area Storage with COPS”, in ACM

Symposium on Operating Systems Principles, 2011.

[18] Olston C, Reed B, Silberstein A, and Srivastava U, “Au-

tomatic Optimization of Parallel Dataflow Programs”,

Unix Users Group Annual Technical Conference, pages

267–273, Unix Users Group Association, 2008.

[19] Ousterhout J, Agrawal P, Erickson D, Kozyrakis C, Le-

verich J, Mazieres D, Mitra S, Narayanan A, Parulkar

G, Rosenblum M, Rumble S M, Stratmann E, and

Stutsman R, “The Case for RAMClouds: Scalable High-

performance Storage Entirely in DRAM”, ACM Special

Interest Group on Operating Systems Operating Sys-

tems Review, volume 43, no 4, pages 92–105, January

2010.

[20] Pavlo A, Paulson E, RasinA, Abadi D J, DeWitt D J,

Madden S, and Stonebraker M, “A Comparison of Ap-

proaches to Large-Scale Data Analysis”, Special Interest

Group on Management Of Data Conference, pages 165–

178, ACM, 2009.

[21] Selinger P G, Astrahan M M, Chamberlin D D, Lorie D

D, and Price T. G “Access Path Selection in a Relation-

al Database Management System”. In P. A Bernstein,

editor, Special Interest Group on Management Of Data

Conference, pages 23–34, ACM, 1979.

[22] Sovran Y, Power R, Aguilera M K, and Li J, “Transac-

tional Storage for Geo-replicated Systems”, in ACM

Symposium on Operating Systems Principles, 2011.

[23] “Teradata”, http://www.teradata.com

[24] vorgelegt von, Daniel Warneke, Berlin, “Massively Pa-

rallel Data Processing on Infrastructure as a Service

Platforms”.

[25] Yang H, Dasdan A, Hsiao R, and Parker D S, “MapRe-

duce-Merge: Simplified Relational Data Processing on

Large Clusters”, in Special Interest Group on Manage-

ment of Data, 2007.

[26] Zahariab M, Konwinski A, JosephA D, Katz R H, and

Stoica I, “Improving MapReduce Performance in Hete-

rogeneous Environments”, in Operating Systems Design

and Implementation, 2008.

