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Abstract 
MapReduce framework in Hadoop plays an important role in handling and processing big data. Hadoop is scalable that is it can 

reliably store and process petabytes. MapReduce works by dividing input files into chunks and processing these in a series of 

parallelizable steps. MapReduce framework offers a response to the problem by distributing computations among large sets of nodes. 

we concentrate on geographical distribution of data for sequential execution of MapReduce jobs to optimize the execution time. The 

fixed execution strategy of MapReduce program is not optimal for many task and as it does not know about the behavior of the 

functions. Thus, to overcome these issues, we are enhancing our proposed work with parallelization contracts. The parallelization 

contracts include input and output contract which includes the constraints and functions of data execution.  These contracts help to 

capture a reasonable amount of semantics for executing any type of task with reduced time consumption. 
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1. INTRODUCTION 

Data comes from many sources such as social media websites, 

sensors to gather climate information, trajectory information, 

transaction records, other web site usage data etc. it is called 

Big data. The limits to what can be done are often times due to 

how much data can be processed in a given time-frame. Paral-

lelization contract framework have become one of the toolkit 

for processing large datasets using cloud computing resources, 

and are provided by most cloud vendors. GEO-PACT, a system 

for efficiently processing geo-distributed big data GEO-PACT 

is a Hadoop based framework that can efficiently perform a 

sequence of Parallelization Contracts jobs on a geo-distributed 

dataset across multiple datacenters. Sequences of Paralleliza-

tion Contracts jobs are executed on a given input by applying 

the first job on the given input, applying the second job on the 

output of the first job, and so on. GEO-PACT acts much like 

the atmosphere surrounding the clouds. The problem of execut-

ing geo-distributed Parallelization Contracts job sequences as 

arising in “cloud of clouds” scenarios is analyzed for job ex-

ecution. Executing individual Parallelization Contracts jobs in 

each datacenter on corresponding inputs and then aggregating 

results is defined as multiple execution path. The datacenter 

with optimized execution path is selected for job execution. 

 

2 HDFS 

The Hadoop Distributed File System (HDFS). Provides redun-

dant storage for massive amounts of  data using inexpensive 

commodity hardware and serves as the large scale data storage 

system. The NameNode splits large files into fixed sized data 

blocks which are scattered across the cluster. Typically the data 

block size for the HDFS is conFigd as 64MB, but it can be 

conFigd by file system clients as per usage requirements. The 

data storage is of type write once/read many (WORM) and 

once written, the files can only be appended and cannot be 

modified to maintain data coherency. Since HDFS is built on 

commodity hardware, the machine fault rate is high. In order to 

make the system failure tolerant, data blocks are replicated 

across multiple DataNodes. 

 

2.1 NameNode 

NameNode is important for HDFS to store its metadata relia-

bly. Furthermore, while the file data is accessed in a write once 

and read many model, the metadata structures (e.g., the names 

of files and directories) can be modified by a large number of 

clients concurrently. It is important that this information is 

never desynchronized. Therefore, it is all handled by a single 

machine, called the NameNode. The NameNode stores all the 

metadata for the file system. Because of the relatively low 

amount of metadata per file (Information about file locations in 

HDFS, Information about file ownership and permissions, 

Names of the individual blocks, Locations of the blocks of 

each file), all of this information can be stored in the main 

memory of the NameNode machine, allowing fast access to the 

metadata. 
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Fig 1.1 HDFS Architecture 

 

2.2 Secondary NameNode 

The Secondary NameNode is not a failover NameNode and it 

performs memory-intensive administrative functions for the 

NameNode. Secondary NameNode should run on a separate 

machine in a large installation. The secondary name-node is to 

perform periodic checkpoints. The secondary name-node pe-

riodically downloads current name-node image and edits log 

files, joins them into new image and uploads the new image 

back to the (primary and the only) name-node. If the name-

node fails and it will restart on the same physical node then 

there is no need to shutdown data-nodes, just the name-node 

need to be restarted. If the old node cannot use anymore you 

will need to copy the latest image somewhere else. The latest 

image can be found either on the node that used to be the pri-

mary before failure if available; or on the secondary name-

node. 

 

2.3 DataNode 

A DataNode is a storage server that accepts read/write requests 

from the NameNode. DataNodes store data blocks for local or 

remote clients of HDFS. Each data block is saved as a separate 

file in the local file system of the DataNode. The DataNode 

also performs block creation, deletion and replication as a part 

of file system operations. For keeping the records up-to-date, 

the DataNode periodically reports all of its data block informa-

tion to the NameNode.  DataNode instances can talk to each 

other for data replication. To maintain its live status in the clus-

ter, it periodically sends heartbeat signals to the NameNode. 

When the NameNode fails to receive heartbeat signals from the 

DataNode, it is marked as a dead node in the cluster. 

 

3. GEO-DISTRIBUTION 

Applications on cloud environment are geographically distri-

buted, for the reasons: to access data frequently; data’s are col-

lected and stored by different organizations to shared towards a 

common goal; datasets are replicated across datacenters for 

availability. Geo-PACT is a Hadoop-based system that can 

efficiently process concurrent jobs on a geographically distri-

buted dataset. 

 

Consider n datacenters, given by DC1, DC2…DCn with input 

sub datasets I1, I2,…,In respectively. The total amount of input 

data is thus |I|=
n

i=1|Ii|. The bandwidth between the datacenters 

DCi and DCj (i!= j) is given by Bi,j and the cost of  transmitting 

one unit of data between two datacenters is Ci,j. We define an 

initial minimum partition size of input dataset to be transferred 

across datacenters.  On this geo-distributed input dataset se-

quence of jobs J1, J2,…Jn have to be executed. In each job 

parallelization contract (PACTs) is applied. PACTS consist of 

input and output contract. Input contract consist of five con-

tracts and output contract may be optional. 

 

4 THE PACT PROGRAMMING MODEL 

The PACT Programming Model is an extension of map/reduce 

programming model. It operates over a key/value couple data 

model so called Parallelization Contracts (PACTs). Following 

the PACT programming model, programs are implemented by 

providing task specific user code (the user functions, UFs) for 

selected PACTs and assembling them to a work flow. A PACT 

defines properties on the input and output data of its associated 

user function. Figure 2 shows the parts of a Parallelization 

Contracts, contains only one Input Contract and an optional 

Output Contract. The Input Contract of a Parallelization Con-

tracts designates how the user function can be evaluated in 

parallel. Optional output Contracts allow the optimizer to infer 

certain properties of the output data of a user function and to 

create a more efficient execution strategy for a program. 

 
 

 
 

 
 
 
 

 

 

Fig 4.1 PACT Components 

 

4.1 The Map Input Contract 

The Map contract is used to process each key/value couple 

independently; the Map input contract states that the user code 

is invoked only once for each key-value couple of the input 

data set. 

 

 

 

 

 

 

 

 

 

 

Fig 4.2 Map Input Contract 
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4.3 The Reduce Input Contract 

PACT Reduce input contract, in which all key-value couple of 

a PACTs input data are grouped with an identical key. The user 

code is attached to the Reduce contract is invoked for each of 

these groups independently. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.3 Reduce input contract 

 

4.4 The Cross Input Contract 

Multi-input contracts is the Cross input contract. The user code 

attached to those multi-input contracts expects to receive data 

from two specific data sources as input. Multi-input contracts 

also construct the subsets for the user code based on two dif-

ferent input set and builds the Cartesian product of the two 

inputs. All couple in the Cartesian product are then processed 

independently by separate calls of the user code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.4 Cross input contract 

 

4.5 The CoGroup Input Contract 

CoGroup input contract, which is also a multi-input contract. 

Independent subsets are built by joining the groups with same 

keys of all inputs. The key/value couple of all inputs with the 

same key are assigned to the same subset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.5 Cogroup input contract 

 

4.6 The Match Input Contract 

The Match input contract is a multiple input contract. All com-

binations of key-value couples with same keys are built in the 

input data sets. After all groups are processed independently by 

separate invocations of the attached user code. The Match in-

put contract performs equi-join on the key. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6 Match input contract 

 

4.7 The PACT Output Contracts 

Output Contracts are capable to declare indisputable properties 

of user functions to maximize the efficiency of the task execu-

tion. An example of such an output contract is the SameKey 

contract. When attached to a Map function then the user code 

will not change the key, i.e. the type and value of the key re-

main after the user code’s invocation and are the same in the 

output as in the input. Those references can be used by an op-

timizer that to generates parallel execution plans. The men-

tioned SameKey contract can frequently help to avoid unneces-

sary repartitioning and therefore expensive data shipping. 

Hence, Output Contracts can significantly improve the runtime 

of a PACT program. 

 

5. OPERATION 

On given geo-distributed input dataset, a sequence of opera-

tions is performed. In the following we focus on parallelization 

contracts jobs J1 , J2 , ..., J m giving rise to a sequence of 5xm 
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operations. Since each parallelization contracts job consists of 

five major phases/operations (map, cross, match, cogroup, re-

duce). We  define  the  state  of  data  before  a  phase  as  a  

stage identified by  0..5m.  So input data is in stage 0 and final 

output data received after applying MapReduce jobs 1...m is in 

stage 5m. 

 

To  move  data  from  stage  s  to  next  stage  s + 1  a paralleli-

zation contracts phase is applied to data partitions and the same 

number of (output) data partitions are created. The initial kth 

partition of data is denoted by Pk0, and Pks represents the out-

put after executing parallelization contracts phases 1..s on par-

tition Pk0. Before performing a MapReduce phase, a partition 

present in a datacenter may be moved to another datacenter. To 

make our solution tractable we only allow full partitions of 

data to be copied.  The move may be for an initial partition or a 

derivative of it received after executing one or more paralleli-

zation contracts phases. Initial partition sizes can be used as 

parameter to trade accuracy and computation costs. 

 

In this section executing sequence of parallelization contracts 

on given input datasets. One of the main execution path is mul-

tiple execution path. Execution path for executing individual 

parallelization contracts in each datacenter on given sub data-

sets and aggregating result from that datacenter is called mul-

tiple execution path. Aggregating result is not done automati-

cally in a datacenter hence indexed aggregators are used. Mov-

ing a data partition from one datacenter to another is costly 

since this involves copying data across inter-datacenter links 

from one distributed file system to another. If a partition Psk is 

copied from DCi to DCj at stage s, this partition should not be 

copied back to DCj to DCi at s+1 stage and also not copied 

within same stage. Input sub-datasets are replicated across da-

tacenters, by taking exactly one replica of each of the input 

sub-datasets. 

 

5.1 Architecture 

GEO-PACTs consist of single group manager in only one data-

center and job manager is deployed in every participating data-

center. Group manager finds the execution path and each job 

manager in datacenter manage phase of parallelization contract 

jobs that executed within datacenter using Hadoop cluster. Job 

manager  contains two components which are copy manager 

and aggregation manager. Copy manager manage copying data 

from one datacenter to another and aggregation manager man-

age the aggregation of result copied from different datacenter. 

Data center configuration file describe about the datacenter 

which have to be participate in geographically distributed pa-

rallelization contracts jobs handled by geo-pacts. Identification 

is provided to each datacenter to identify when it is running 

parallelization contracts. Datacenters store their data in Hadoop 

distributed file system. 

 

 
 
 

 
 

Fig 5.1 Architecture of GEO-PACT 

 

Geographically distributed parallelization contracts jobs se-

quences are submitted to the Group manager through a job 

configuration file. Group manager breaks the job sequence into 

a number of tasks and this information is informed to Job man-

ager components copy manager and aggregation manager to 

describe the portion of task that should be performed within 

corresponding datacenters. User can specify sub dataset of 

geographically distributed input dataset through a xml based 

job configuration file. 

 

Once the group manager starts its execution in multiple execu-

tion paths it instructs each job manager about the paralleliza-

tion contracts jobs that should be executed in corresponding 

datacenter and the respective sub-datasets those parallelization 

contracts jobs should be executed on. Job managers execute the 

jobs using the Hadoop clusters deployed in corresponding da-

tacenters. The Group manager informs a Job manager to copy 

data to a corresponding datacenter or aggregate multiple sub 

datasets copied from two or more corresponding datacenters. A 

Job manager use local Copy manager and Aggregation manag-

er to execute these tasks. 

 

When ever a copy operation has to be performed, Copy man-

ager in the datacenter from where the data has to be copied 

from and reads data from the corresponding HDFS storage and 

sends data to the Copy manager located in the datacenter to 

which data has to be copied, to through a TCP stream. The 

Copy manager in the receiving side stores this data in the cor-

responding HDFS distributed storage. GEO-PACT uses aggre-

gators to aggregate the results obtained from parallelization 

contracts jobs in parts of the input. Once output data generated 

in one or more datacenters is copied to a single destination 
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datacenter, the Group manager instructs the Job manager run-

ning in the destination datacenter to initiate an aggregate op-

eration.  

 

6. DATACENTER ARCHITECTURE 

Parallelization contract style computation systems have a min-

imum network bandwidth to move the data to the computation, 

instead of the computation must move to the data. In datacen-

ter, compute nodes and storage nodes are attached to same 

network switch. Compute node contains central processing unit 

and network interface, and storage node contains disk to store 

data. Instead of co-locating storage and computation in the 

same box as in the traditional MapReduce storage architecture, 

this design co-locates storage and computation on the same 

Ethernet switch. The advantages of using remote disks in a 

datacenter are many. First, both computation node and storage 

node can be modified to meet the application requirements 

during both cluster construction and operation. Second, com-

putation node and storage node can be decoupled from each 

other when they went to failure. It avoids wasted resources that 

would have been used to reconstruct lost storage when a com-

putation node fails. 

 

Third, fine-grained power management techniques can be used, 

whereby compute and storage nodes are enabled and disabled 

to meet current application requirements. Finally, because 

computation is now an independent resource, a mix of both 

high and low power processors can be implemented. The run-

time environment managing application execution can change 

the processors being used for a specific application in order to 

meet administrative power and performance goals. 

 

 
 

Fig 6.1 Remote Storage Architecture 

 

7. FAILURE HANDLING 

The Group manager must start in a trustworthy datacenter. 

Each Job manager frequently sends a heartbeat message back 

to the Group manager. If the Group manager does not receive a 

heartbeat from a corresponding Job manager for some time, a 

new Job manager is started in the same datacenter. If the Group 

manager receives a late heartbeat message from the old Job 

manager after starting the new Job manager, a message is sent 

back to the old Job manager to quit itself.  Once a Job manager 

starts a parallelization contracts job it stores information about 

this job in a predefined location of the distributed file system in 

its datacenter so that a newly started Job manager can catch up. 

Failure of a Group manager will result in the failure of the 

GEO-PACT instance similar to the termination of the Job 

Tracker component of Hadoop. 

 

8 CONCLUSIONS AND FUTURE WORK 

This paper presents Geo-Pact, a extension of MapReduce 

framework that can efficiently execute a sequence of jobs on 

geographically distributed datasets. Minimizing either execu-

tion time or cost. GEO-PACTS can substantially improve time 

or cost of job execution compared to naive schedules of cur-

rently widely followed deployments. This framework is also 

applicable to single datacenters with non uniform transmission 

characteristics, such as datacenters divided into zones or other 

network architectures. Future work is to form clusters from the 

final result and with this analyzed data can be retrived are more 

efficiently. 
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