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Abstract 
This paper deals with the numerical study of MHD Non-Darcianlayer flow on an exponentially stretching surface and free convection 

heat transfer with a presence of Thermal Radiation. The flow is considered over a stretching sheet in the presence of non dimensional 

parameters. Conversion of governing nonlinear boundary layer equations to coupled higher order non-linear ordinary differential 

equations using similarity transformations. The obtained governing equations were solved numerically by using keller box method. 

The various nondimentional parameters effects with velocity profile and thermal profile are discussed in detail with graphically. 
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1. INTRODUCTION 

In industrial manufacturing process the heat and mass transfer 

problems are well used. This phenomena applicable in wire and 

fibre coatings and transpiration cooling etc. In astrophysics and 

geophysics the MHD flow basically used. Basically the MHD 

flow has wide applications. Usually used in Engineering and 

industrial.T he fluid subjected to a magnetic field become a 

good agreement results. There is a wide application in 

Mechanical Engineering field.. After the pioneering work of 

Sakiadis [1, 2] many researchers gave attention to study flow 

and heat transfer of Newtonian and non-Newtonian fluids over 

a linear stretching sheet. By considering quadratic stretching 

sheet, Kumaran and Ramanaiah [3] analyzed the problem of 

heat transfer. Ali [4] investigated the thermal boundary layer 

flow on a power law stretching surface with suction or 

injection.  

Elbashbeshy [5] analyzed the problem of heat transfer over an 

exponentially stretching sheet with suction. Magyari and Keller 

[6] discussed the heat and mass transfer in boundary layers on 

an exponentially stretching continuous surface. Sanjayanand 

and Khan [7, 8] extended the work of Elbashbeshy [5] to 

viscoelastic fluid flow, heat and mass transfer over an 

exponentially stretching sheet .Raptis et al.[9] constructed 

similarity solutions for boundary layer near a vertical surface in 

a porous medium with constant temperature and concentration. 

Bejan and Khair [10] used Darcy’s law to study the features of 

natural convection boundary layer flow driven by temperature 

and concentration gradients. Forchheimer[11] proposed 

quadratic term in Darcian velocity to describe the inertia effect 

in porous medium. Plumb and Huenefeld[12] studied the 

problem of non-Darcian free convection over a vertical 

isothermal flat plate. Rees and Pop[13] also studied yhe free 

convection flow along a vertical wavy surface with constant 

wall temperature. Rees and Pop[14] studied the case where the 

heated surface displays waves while the Darcys law is 

supplemented by the Forchheimerterms. They stated that the 

boundary flow remains self similar in the presence of surface 

waves but where inertia is absent, and when inertia is present 

but surface waves are absent. However, the combination of the 

two effects yields non similarity. Tsou et al.[15] studied flow 

and heat transfer in the boundary layer on a continuous moving 

surface while Gupta and Gupta[16] solved boundary layer flow 

with suction and injection. Andresson and Bech[17] have 

studied the MHD flow of the power law fluid over stretching 

sheet. Pavlov[18] gave an exact similarity solution to the MHD 

boundary layer equation for the steady and two dimensional 

flow caused solely by the stretching if an elastic surface in the 

presence of uniform magnetic field. M S Abel and Mahesha 

[19] heat transfer in MHD visco elastic fluid flow over a 

stretching sheet with variable thermal conductivity non uniform 

heat, source andradiation. In the paper we analysed thermal 

radiation effect in a exponentially vertically stretching surface 

on a MHD flow. And effect of various physically parameters 

are also discussed in detail. 
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2. MATHEMATICAL FORMULATION 

 

Under the usual boundary layer approximations, the flow and heat transfer in the presence of radiation effects are governed by the 

following equations: 
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The associated boundary conditions to the problem are  

 

U= ( ), 0, ( ),w wU x v T T x  at y=0,                                             (4) 
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Where 
0T  and a are parameters of temperature distribution in the stretching surface. T is the temperature,K is the thermal 

conductivity, pC  is the Specific heat and 
rq  is the radiative heat flux. 
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Where K 
 is the mean absorption coefficient and   is the Stefan-Boltzmann Constant. 

4T is expressed as a linear function of 

temperature,hence 

 

4 3 44 3T T T T                     (9) 

 

Introducing the following non- dimensional parameter 
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Where  is the stream function which is defined in the usual form as 
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Substituting (10)&(11) in (12).We obtain u and v as follows 
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Eqns (1) to(5) istronsformed into the ordinary differential equation with the aid of equations( 10)-(13).Thus, the governing equations 

using the diemensionalessfuction f( ) and ( )   become 
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The boundary conditions (4) and (5) reduce to 
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 Radiation number.In the above system of local similarity equations ,the effect of the magnetic field is included as a ratio 

of the Hartman number to the Reynolds number. 

 

The physical quantities of interest in the problem are the local skin friction acting on the surface in contact with the ambient fluid of 

constant density which is defined as 
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And the non-dimensional skin friction coefficient,
fC , which can be written as, 
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The local surface heat flux through the wall with k as thermal conductivity of the fluid is given by 
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The local Nusselt number,
,xNu which is defined as 
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Where Rex  is the local Reynolds number based on the surface velocity and is given by 
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3. NUMERICAL METHOD 

The above Non linear equations that is 14 and 15 are subjected with similarity transformations and the obtained governing equations 

solved by finite difference scheme kellor box method by gauss elimination method. 

 

2
2

''' '' ' 2 '2
2 1(2 ) 2 2 ( ) 0

Re

ax
x x Ha

f ff N f Gre e e f N       
    (24)

 

2 2
(2 ) 2

1 '' ' ' ' ''2
4

Pr (1 ) (2 ) 2 0 (25)
3 Re

    


       
X a

X XK Ha
f af e Ec f f e e



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org                                      992 

(0) 0, '(0) 1, (0) 1 0

'( ) 0, ( ) 0

 

 

   

    

f f as

f as
                                       (26)

 

 

 

In this method the third and second order non linear 

differential equations, 

 

3.1 Finite Difference Scheme  

This scheme involves 5 steps 

Step 1: Decomposing of given differential equations into a set 

of first order ordinary differential equations. 

Step2: a) Approximate the first order derivatives with standard 

forward difference 
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averages 
1

2
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y 


using these approximation the 

ordinary differential equations is transformed to finite 

difference equations. solution, say i i iy y y


  And 

substituting this in the finite difference equation and drop 

terms non-linear in iy to arrive at linear F.D.E’s. 

Step3: Linearise F.D.E using Newton’s method this involves to 

start with a guess seidel, or Jacobi method]and obtain iy  

and add the correction to initial solution.  

Step4: Solve the linearised F.D.E’s using the standard method 

Gauss elimination. 

Step 5.Repeat step 3 & Step 4 until we obtain the required 

result. 

 

4. RESULTS AND DISCUSSIONS: 

Present results, are displayed in Table 1 and are noticed to be 

well in agreement with the present work 

 

Fig. 2 Represents the effect of magnetic field parameter

2

Re

Ha
, 

on velocity profile 'f .Here magnetic field produces a drag in 

the form of Lorentz force.Due to this effect,the magnitude of 

velocity decreases and the thermal boundary layer thickness 

increases. 

 

Fig 3 Represents the various values of parameter a with 

velocity profile . From this figure, it is observed that the value 

of a increases with increase in the velocity flow.and maximum 

velocity occurs at a=7. 

Fig. 4Represents the dimensionless parameter X with 

horizontal velocity profile. From this figure, it is noticed that 

the value of X increases with decreases in the velocity 

profile.here the flow is adjacent to a stretching sheet. 

 

Fig. 5 It is observed from this figure that temperature decreases 

with increase in the values of a. Further, it is noticed that the 

thermal boundary layer thickness increases with increase in the 

value of a.. for positive value of a,heat transfer decreases. 

which indicates that, the flow of heat transfer is directed from 

the wall to the ambient fluid whereas the rate of heat transfer in 

the boundary layer increases near the wall. 

 

Fig. 6 depicts the temperature profile in the fluid for various 

values of

2

Re

Ha
,for a = -2 and Gr = 0, 0.5. It is noticed that an 

increase in the strength of magnetic field i.e Lorentz force 

leads to an increase in the temperature far away from the wall, 

within the thermal boundary layer but the effect of magnetic 

field near the wall is to decrease the temperature in the absence 

of Grash of Number. When the magnetic field increases, the 

thermal boundary layer thickness increases. 

 

fig7,and it is noticed that increase in Grash of number ,increase 

in temperature up to certain value of n and suddenly decreases 

and decays asymptotically to zero. Further it is observed that 

this increase in temperature is due to the temperature 

difference between stretched wall and the surrounding fluid. 

When Grash of number leads to increases, the thermal 

boundary layer thickness decreases 

 

Fig. 8 Represents the temperature profile ( )   for various 

values of X along  for different values of a = -1, -2 and also 

Grash off number Gr = 1.0. It is noticed that the effect of 

increasing X on ( )   is more effective for a = -2 than 

compared to the results obtained in the case when a = -1. It is 

interesting to note the behaviour of X on ( )  , is that the 

temperature overshoots near the wall for small value of X,for a 

= -2, whereas the overshoot diminishes when a is enhanced to -

1 for all other values of X. It is also observed that the boundary 

layer thickness decreases with an increase in X. 

 

Fig. 9 Represents the variation of temperature profiles ( )   

for various values of magnetic field parameter (Ha
2
/Re = 0, 6, 

8) for two values of X. when X increases temperature 

decreases all other fixed values of other involved parameters 
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except when the value of parameter a = 5. It is also to be 

noticed that thermal boundary layer thickness increases as X 

decreases and the effect of magnetic field is to increase the 

temperature for both valuesof X.This is due to the Lorentz 

force the temperature increases. 

 

Fig10 Represents the effect of Prandtl number Pr on 

dimensionless heat transfer parameter . It is noticed from this 

figure that as Prandtl number Pr increases,temperature profile 

decreases. When Prandtl number Pr is small, heat diffuses 

quickly compared to the velocity (momentum), especially for 

liquid metals,(low Prandtl number) the thickness of the thermal 

boundary layer is much bigger than the momentum boundary 

layer. Fluids with lower Prandtl number have higher thermal 

conductivities where.Hence the rate of cooling in conducting 

flows increases due to the Prandtl number. 

 

Fig 11 Represents the effect of porous parameter N1 over 

velocity profile.Porous parameter increases ,velocity 

decreases.Due to this,the velocity decreases in the boundary 

layer. 

 

Fig12 Represents the effect of inertia coefficient N2 in the 

velocity profile.From this we conclude that due to the N2,the 

thickness of momentum of boundary layer decreases. 

 

Fig 13: Represents the effect of heat source/sink parameter  

.It is noticed that, when 0 
, the temperature increases. 

when, th
0 

 temperature falls. 

 

Fig14: depicts dimensionless temperature field for various 

values of K,with fixed values of other involved parameters. It 

is observed from the figure that ,K increases, the temperature 

profiles and the thermal boundary layer thickness also increase. 

 

Fig15: Effect of porous parameter N1 on a temperature profiles 

and it is noticed that, temperature increases with the increase of 

porous parameter, which offers resistance to the flow resulting 

in the increase of temperature in the boundary layer. 

 

Fig16: Effect of drag coefficient of porous medium N2.From 

the figure it is noticed that the effect of drag coefficient is to 

increase the temperature profile in the boundary layer. Which 

implies boundary layer thickness also increases. 

 

Table: Values of heat transfer coefficient , '(0)  for various values of K and Ec with Pr=1.0 and all parameters taken as 0.0 

 

         K       Ec=0.0       Ec=0.5      Ec=1.0 

       1.0     -1.641723      -0.6609       0.3198 

       2.0     -0.57579     -0.29001     -0.00423 

       3.0      -0.4714     -0.26390    -0.05638 
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Fig.4.Variations of velocity profiles with  for different values of X.
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Fig 15: Effect of N1 on the temperature profiles ( ) 
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Fig 16: Effect of N2 on the temperature profiles ( ) 
 

 

 

5. CONCLUSIONS 

Due to the presence of porous parameter,the thermal boundary 

layer thickness increases.Effect of drag coefficient also 

enhance the thermal boundary layer thickness. 
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