CAHIT-8-EQUITABILITY OF CORONAS C_n °K₁

Dayanand G. K¹, Shabbir Ahmed², Danappa. G. Akka³

¹Dept. of Mathematics, BKIT (Rural Engg, College) Bhalki, Dist. Bidar Karnataka, India ²Professor of Mathematics, Gulbarga University, Gulbarga, Karnataka, India ³Dept. of Mathematics, Raja Rajeshwari College of Engineering Bangalore-74, Karnataka, India

Abstract

Cahit [4] proposed the concept of labeling the vertices and edges among the set of integers $\{0,1,2,\ldots,k-1\}$ as evenly as possible to obtain a generalization of graceful labeling as follows: For any graph G(V,E) and any positive integer k, assign vertex labels from $\{0,1,2,\ldots,k-1\}$ so that when the edge labels are induced by the absolute value of the difference of the vertex labels, the number of vertices labeled with i and the number of vertices labeled with j differ by at most one and the number of edges labeled with i and the number of. Cahit called a graph with such an assignment of labels k-equitable.

We establish that Corona graphs $C_n \circ K_1$ are k-equitable as per Cahit's definition of k-equitability, k = 8.

Keywords: Labeling, k-equitable, Cahit-k-equitable, corona graph.

AMS Subject Classification: Primary 05B15, 05B20, secondary 62K05.

1. INTRODUCTION

Every labeling of the vertices of a graph with distinct natural numbers induces a natural labeling of its edges: the label of an edge uv is the absolute value of the difference of labels of u and v. A labeling of the vertices of graph of order p is minimally k-equitable if the vertices are labeled with 0,1,2,.....p and in the induced labeling of its edges every label either occurs exactly k times or does not occur at all.

Bloom [2] used the term k-equitable to describe another kind of labeling. Hence we all use the term Cahit-k-equitable when the k-equitability is as per Cahit's definition. Bloom defined a labeling of the vertices of a graph to be k-equitable if in the induced labeling of its edges. Every labeling occurs exactly ktimes if at all.

The Corona $G_1 \circ G_2$ of two graphs G_1 and G_2 was defined by Frucht and Harary[5] as the graph G obtained by taking one copy of G_1 which has p_1 vertices and p_1 copies of G_2 and then joining the ith vertex of G_1 to every vertex in the ith copy of G_2 . In [3] proved that the corona graphs $C_n \circ K_1$ k-equitable as per Cahit's definition of k-equitability k = 2, 3, 4, 5, 6. In addition in [1] we obtain the coronas $C_n \circ K_1$ are 7-equitable as per Cahit's definition. In this paper, we obtain that the coronas $C_n \circ K_1$, $n \ge 3$ are Cahit-8-equitable as per Cahit's definition.

2. CAHIT - 8 - EQUITABILITY OF CORONAS

Theorem: All Coronas Cahit-8-equitable

_____***_____

<u>Proof</u>: For Cahit-8-equitable the label set as well as the edge weight set is $\{0,1,2,3,4,5,6,7\}$. We have $|V(C_n \circ K_1)| = |E(C_n \circ K_1)| = 2n$. We consider different cases,

<u>Sub case 1.1</u>: Suppose t is even. We give suitable labeling at the end of the proof for t = 2. So let $t \ge 4$. For Cahit -8 – equitability of $C_n \circ K_1$ each label will have to be used 't' times such that each edge weight will occur 't' times.

We describe the labeling function $f: V(C_n \circ K_1)$ {0, 1,------,7}

$$f(u_1) = 6 \qquad \qquad f(v_1) = 5$$

$$f(u_{2i}) = 0$$
 $f(v_{2i}) = 4, 1 \le i \le \frac{t}{2}$

 $f(u_{2i+1}) = 7 \qquad f(v_{2i+1}) = 2 \qquad 1 \le i \le \frac{t}{2} - 1$ $f(u_{t+1}) = 7 \qquad f(v_{t+1}) = 7$

 $f(u_{2i}) = 0$ $f(v_{2i}) = 5$ $\frac{t}{2} + 1 \le i \le t$

$f(u_{2i+1})=6$	$f(v_{2i+1}) = 5$	$\frac{t}{2} + 1 \le i \le t - 1$
$f(u_{2t+1}) = 6$	$f(v_{2t+1}) = 2$	
$f(u_{2i+1}) = 4$	$f(v_{2i+1}) = 6$	$t+1 \le i \le \frac{3t}{2} - 1$
$f(u_{2i}) = 1$	$f(v_{2i}) = 2$	$t+1 \le i \le \frac{3t}{2} - 1$
$() \qquad 1$	$\mathcal{L}(\mathcal{L})$	4
$f(u_{3t}) = 1$	$f(v_{3t})$	= 4
$f(u_{3t}) = 1$ $f(u_{2t+1}) = 3$	$f(v_{3t})$ $f(v_{3t+1}) = 1$	$= 4$ $\frac{3t}{2} \le i \le 2t - 1$
$f(u_{3t}) = 1$ $f(u_{2t+1}) = 3$ $f(u_{3t+2}) = 3$	$f(v_{3t+1}) = 1$ $f(v_{3t+2}) = 2$	$= 4$ $\frac{3t}{2} \le i \le 2t - 1$
$f(u_{3t}) = 1$ $f(u_{2t+1}) = 3$ $f(u_{3t+2}) = 3$ $f(u_{2i}) = 3$	$f(v_{3t})$ $f(v_{3t+1}) = 1$ $f(v_{3t+2}) = 2$ $f(v_{2i}) = 7$	$= 4$ $\frac{3t}{2} \le i \le 2t - 1$ $\frac{3t}{2} + 2 \le i \le 2t$

It can be directly verified that this labeling of $C_n \circ K_1$ is Cahit – 8 – equitable.

We give below a suitable labeling for t=2 which corresponds to $n=8\,$

3. CAHIT – 8 – EQUITABLE LABELING OF C₈°K₁

Here p = q = 16, t = 2, n = 8

- (v_1) 5 4 7 5 2 4 2 1 (v_8)
- $(u_1) \ 6 \ 0 \ 7 \ 0 \ 6 \ 1 \ 3 \ 3 \ (u_8)$

<u>Sub Case 1.2</u> Suppose t is odd. We give suitable labeling at the end of the proof for t = 3. So let $t \ge 5$. In this case each label will have to be used 't' times such that each edge weight will occur 't' times.

We describe the,7}	labeling function	$f f: V(C_n \circ K_1)$	{0,1,
$f(u_{2i-1}) = 7$	$f(v_{2i-1})$	$(1) = 4$ $1 \le i$	$\leq \frac{t+1}{2}$
$f(u_{2i})=0$	$f(v_{2i}) = 2$	$1 \le i \le \frac{t+1}{2}$	
$f(u_{2i+1}) = 6$	$f(v_{2i+1}) = 1$	$\frac{t+1}{2} \le i \le t$	
$f(u_{2i+2})=0$	$f(v_{2i+2}) = 5$	$\frac{t+1}{2} \le i \le t-1$	
$f(u_{2t+2}) = 5$	$f(v_{2t+2}) = 5$		
$f(u_{2i+1}) = 1$	$f(v_{2i+1}) = 5$	$t+1 \le i \le \frac{3t-3}{2}$	
$f(u_{2i}) = 2$	$f(v_{2i}) = 4$	$t+2 \le i \le \frac{3t-1}{2}$	

$$f(u_{3t}) = 1$$
 $f(v_{3t}) = 2$

 $f(u_{3t+1}) = 3$ $f(v_{3t+1}) = 4$

 $f(u_{2i+1}) = 3$ $f(v_{2i+1}) = 7$ $\frac{3t+1}{2} \le i \le 2t - 1$

 $f(u_{2i}) = 3$ $f(v_{2i}) = 6$ $\frac{3(t+1)}{2} \le i \le 2t$ It can be directly verified that each label and each ed

It can be directly verified that each label and each edge weight occur 't' times.

We give below a suitable labeling for t = 3 which corresponds to n = 12.

4. CAHIT – 8 – EQUITABLE LABELING OF $C_{12} \circ K_1$

Here p = q = 24, t = 3, n = 12(v₁) 4 2 4 2 1 5 1 5 2 4 7 6 (v₁₂) (u₁) 7 0 7 0 6 0 6 5 1 3 3 3 (v₁₂)

$$\underline{\text{Case 2}} : 2n \equiv 2 \pmod{8}$$

Let $p = q = 2n = 8t + 2$

Sub Case 2.1: Suppose t is even. We give suitable labeling at the end of the proof for t = 2. So let $t \ge 4$. For Cahit -8 – equitability of $C_n \circ K_1$ six labels will have to be used 't' times each, and two labels will have to be used 't+1' times each such that six edge weights will occur 't' times each and two edge weights will occur 't+1' times each.

We describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, \dots, -7\}$

$f(u_1)=0$	$f(v_1)$	= 1
$f(u_{2i}) = 7$	$f(v_{2i}) = 4$	$1 \le i \le \frac{t}{2}$
$f(u_{2i+1}) = 0$	$f(v_{2i+1}) = 2$	$1 \le i \le \frac{t}{2}$
$f(u_{2i}) = 6$	$f(v_{2i}) = 1$	$\frac{t}{2} + 1 \le i \le t$
$f(u_{2i+1}) = 0$	$f(v_{2i+1}) = 5$	$\frac{t}{2} + 2 \le i \le t$
$f(u_{2t+2}) = 5$	$f(v_{2t+2}) = 5$	
$f(u_{2i+1}) = 1$	$f(v_{2i+1}) = 5$	$t+1 \le i \le \frac{3t}{2} - 1$
$f(u_{2i}) = 2$	$f(v_{2i})$	$= 4 \qquad \qquad t+2 \leq i \leq \frac{3t}{2}$
$f(u_{3t+1}) = 1$	$f(v_{3t+1}) = 2$	
$f(u_{2i}) = 3$	$f(v_{2i}) = 6$	$\frac{3t}{2} + 1 \le i \le 2t$

$$f(u_{2i+1}) = 3$$
 $f(v_{2i+1}) = 7$ $\frac{3t}{2} + 1 \le i \le 2t$

It can be directly verified that six labels and six edge-weights occur 't' times each and two labels and two edge weights occur 't+1' times each.

We give below a suitable labeling for t=2 which corresponds to n = 9.

5. CAHIT – 8 – EQUITABLE LABELING OF C9°K1

Here p = q = 18, t = 2, n = 9(v₁) 1 4 2 1 4 5 2 6 7 (v₉) (u₁) 0 7 0 6 0 5 1 3 3 (u₉)

<u>Case 2.2</u> Assume t is odd. We give suitable labeling at the end of the proof for t = 1. So let $t \ge 3$. For Cahit-8-equitability of $C_n o K_1$ six labels will have to be used 't' times each and two labels will have to be used 't+1' times each such that six edge weights will occur t times each and two edge weights will occur t+1 times each.

We describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, \dots, -., 7\}$

$f(u_{2i-1})=7$	$f(v_{2i-1})$	$_{1}) = 4$	$1 \le i \le \frac{t+1}{2}$
$f(u_{2i-2})=0$	$f(v_{2i-2}) = 2$	2≤ i ≤	$\leq \frac{t+3}{2}$
$f(u_{2i+1}) = 6$	$f(v_3) = 1$	$\frac{t+1}{2} \leq i$. ≤ t
$f(u_{2i})=0$	$f(v_{2i}) = 5$	$\frac{t+3}{2} \le i$. ≤ t
$f(u_{2t+2}) = 5$	$f(v_{2t+2}) = 5$		
$f(u_{2i})=1$	$f(v_{2i}) = 5$	t+1≤	$\leq i \leq \frac{3(t-1)}{2}$
$f(u_{2i+4}) = 2$	$f(v_{2i+4}) = 4$		$t \le i \le \frac{3(t-1)}{2} - 1$
$f(u_{3t}) = 1$	$f(v_{3t})$	= 2	
$f(u_{3t+1}) = 3$	$f(v_{3t+1}) = 2$		
$f(u_{3t+2}) = 3$	$f(v_{3t+2}) = 4$		
$f(u_{2i}) = 3$	$f(v_{2i})$	= 6	$\frac{3(t+1)}{2} \leq i \leq 2t$
$f(u_i) = 2$	$f(v_i) =$	= 1	$\frac{3(t+1)}{2} \le i \le 2$

It can be directly verified that six labels and six edge weights occur 't' times each and two labels and two edge weights occur 't+1' times each.

We give below a suitable labeling for t = 1 which corresponds to n = 5.

6. CAHIT – 8 – EQUITABLE LABELING OF $C_5 \circ K_1$

Here p	= q = 10,	t = 1, n =	= 5		
	v_1	v ₂	v ₃	v_4	V_5
	1	4	2	5	3
	0	7	2	0	6
	\mathbf{u}_1	u_2	u ₃	u_4	\mathbf{u}_5
$\begin{array}{l} \underline{\textbf{Case3}} \\ \underline{\textbf{Case3}} \\ \text{Let } p = q = 2n = 8t + 4 \end{array}$					

<u>Sub Case 3.1</u> Assume t is even. We give suitable labeling at the end of the proof for t = 2. So let $t \ge 4$. For Cahit-8-equitability of $C_n \circ K_1$ four labels will have to be used 't' times each, and four labels will have to be used 't+1' times each such that four edge weights will occur t times each and four edge weights will occur 't+1' times each.

We describe the 7}	labeling function	$f: V(C_n)$	$\circ K_1$) {0,1,
$f(u_{2i-1}) = 0$	$f(v_{2i-}$	1) = 2	$1 \le i \le \frac{t}{2} + 1$
$f(u_2) = 7$	$f(v_2) = 4$	1≤ i <u>≤</u>	$\leq \frac{t}{2}$
$f(u_{2i+1}) = 6$	$f(v_{2i+1}) = 1$	$\frac{t}{2} + 1 \le$	≤i≤t
$f(u_{2i}) = 7$	$f(v_{2i}) = 4$	$\frac{t}{2} + 1 \le$	≤i≤t
$f(u_{2t+2}) = 5$	$f(v_{2t+2}) = 5$		
$f(u_{2i+3}) = 1$	$f(v_{2i+3}) = 5$	t≤i≤	$\frac{3t-2}{2}$
$f(u_{2i}) = 2$	$f(v_{2i})$	= 4	$t+2 \leq i \leq \frac{3t}{2}$
$f(u_{3t+1}) = 1$	$f(v_{2t+2}) = 2$		
$f(u_{3t+2}) = 3$	$f(v_{3t+})$.2) = 4	
$f(u_{2i})=3$	$f(v_{2i}) = 7$		$\frac{3t}{2} + 1 \le i \le 2t$
$f(u_{3t+1}) = 3$	$f(v_{3t+1}) = 6$	$\frac{3t}{2} + 2$	$\leq i \leq 2t + 1$

It can be directly verified that four labels and four edge weights occur 't' times each and four labels and four edge weights occur 't+1' times each.

We give below a suitable labeling for t = 2 which corresponds to n = 10.

7. CAHIT - 8 - EOUITABLE LABELING OF

C₁₀°K₁

Here p = q = 20, t = 2, n = 10

\mathbf{v}_1	v_2	V ₃	v_4	v_5	v ₆	v_7
	v_8	V 9	v ₁₀			
2	4	2	1	5	5	2
	4	7	6			
0	7	0	6	0	5	1
	3	3	3			
u_1	u ₂	u ₃	\mathbf{u}_4	u_5	u ₆	u ₇
	u_8	\mathbf{u}_9	u ₁₀			

Sub Case 3.2 Assume t is odd. We give suitable labeling at the end of the proof for t=1. So let $t \ge 3$. For Cahit-8equitability of $C_n \circ K_1$ four labels will have to be used 't' times each and four labels will have to be used 't+1' times each such that four edge weights will occur 't' times each and four edge weights will occur 't+1' times each.

We describe the labeling function $f: V(C_n \circ K_1)$ {0,1,------,7}

$f(u_{2i-1}) = 7$	$f(v_{2i-})$	1) = 4	$1 \le i \le \frac{t+1}{2}$
$f(u_{2i})=0$	$f(v_{2i}) = 2$		$1 \le i \le \frac{t+1}{2}$
$f(u_{2i+1})=0$	$f(v_{2i+1}) = 4$	$\frac{t+1}{2} \le 1$	i≤t
$f(u_{2i})=6$	$f(v_{2i}) = 5$		$\frac{t+3}{2} \le i \le t$
$f(u_{2t+2}) = 5$	$f(v_{2t+2}) = 5$		
$f(u_{2i+1}) = 1$	$f(v_{2i+1}) = 5$	t+1≤	$\leq i \leq \frac{3t-1}{2}$
$f(u_{2i})=0$	$f(v_{2i}) = 6$		$t+2 \leq i \leq \frac{3t+1}{2}$
$f(u_{3t+2}) = 3$	$f(v_{3t+2}) = 1$		
$f(u_{3t+3}) = 3$	$f(v_{3t+3}) = 4$		
$f(u_{2i+1}) = 3$	$f(v_{2i+1}) = 6$	$\frac{3(t+1)}{2} \leq$	≤ i ≤ 2t
$f(u_{2i}) = 3$	$f(v_{2i}) = 7$	$\frac{3t+3}{2}+$	$1 \le i \le 2t + 1$

It can be easily verified that four labels and four edge weights occur 't' times each and four labels and four edge weights occur 't+1' times each.

We give below a suitable labeling for t=1 which correspond to n = 6.

8. CAHIT – 8 – EQUITABLE LABELING OF $C_6 \circ K_1$

Here p	= q = 1	2, $t = 1$, 1	n = 6			
	\mathbf{v}_1	v_2	v_3	v_4	V ₅	v_6
	2	2	5	3	4	1
	7	0	5	6	0	3
	\mathbf{u}_1	u ₂	u ₃	u_4	u ₅	u ₆
<u>Case 4</u>		$2n \equiv 0$ Let p	$2n \equiv 6 \pmod{8}$ Let $p = q = 2n = 8t + 6$			

Sub Case 4.1 Suppose t is even. We give suitable labeling at the end of the proof for t = 2. So let $t \ge 4$. For Cahit-8equitability of $C_n \circ K_1$ two labels will have to be used 't' times each and six labels will have to be used 't+1' times each such that two edge weights will occur 't' times each and six edge weight will occur 't+1' times each.

We describe the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, \dots, N_n\}$ --.7}

$f(u_{2i-1})=0$	$f(v_{2i-1}) = 2$	$1 \le i \le \frac{t}{2}$
$f(u_{2i}) = 7$	$f(v_{2i}) = 4$	$1 \le i \le \frac{t}{2}$
$f(u_{t+1})=0$	$f(v_{t+1}) = 4$	
$f(u_{2i})=6$	$f(v_{2i}) = 1$	$\frac{t}{2} + 1 \le i \le t$
$f(u_{2i+1})=0$	$f(v_{2i+1}) = 5$ $\frac{t}{2} + 1$	≤ i ≤t
$f(u_{2t+2}) = 5$	$f(v_{2t+2}) = 5$	
$f(u_{2i+3}) = 1$	$f(v_{2i+3}) = 5$	$t \leq i \leq \frac{3t}{2} - 2$
$f(u_{2i+4}) = 2$	$f(v_{2i+4}) = 4 \qquad t \le i \le $	$\leq \frac{3t}{2} - 1$
$f(u_{3t+1}) = 1$	$f(v_{3t+1}) = 2$	
$f(u_{3t+3}) = 3$	$f(v_{3t+3}) = 1$	
$f(u_{2i+2}) = 3$	$f(v_{2i+2}) = 7$	$\frac{3t}{2} + 1 \le i \le 2t$
$f(u_{2i+1}) = 3$ $2t + 1$	$f(v_{2i+1}) = 6$	$\frac{3t}{2} + 2 \le i \le$

It can be obviously checked that two labels and two edge weights occur 't' times each and six labels and six edge weights occur 't+1' times each.

We obtain below a suitable labeling for t = 2 which correspond to n = 11.

9. CAHIT - 8 - EQUITABLE LABELING OF

$C_{11} \circ K_1$

Here p = q = 22, t = 2, n = 11(v₁) 2 4 4 1 5 5 2 4 1 7 6 (v₁₁) (u₁) 0 7 0 6 0 5 1 2 3 3 3 (u₁₁)

Sub Case 4.2 Assume t is odd. We obtain labeling at the end of the proof for t = 1. So that let $t \ge 3$. For Cahit-8-equitability of $C_n \circ K_1$ two labels will have to be used 't' times each and six labels will have to be used 't+1' times each such that two edge weights will occur 't' times each and six edge weights will occur 't+1' times each.

We define the labeling function $f: V(C_n \circ K_1) \longrightarrow \{0, 1, \dots, -, 7\}$

 $f(u_{2i-1}) = 7 \qquad f(v_{2i-1}) = 4 \qquad 1 \le i \le \frac{t+1}{2}$ $f(u_{2i}) = 0 \qquad f(v_{2i}) = 2 \qquad 1 \le i \le \frac{t+1}{2}$ $f(u_{2i+1}) = 6 \qquad f(v_{2i+1}) = 1 \qquad \frac{t+1}{2} \le i \le t$ $f(u_{2i}) = 0 \qquad f(v_{2i}) = 5 \qquad \frac{t+3}{2} \le i \le t+1$ $f(u_{2i+1}) = 5 \qquad f(v_{2i+2}) = 5$ $f(u_{2i+1}) = 4 \qquad t+1 \le i \le \frac{3t+1}{2}$ $f(u_{2i}) = 1 \qquad f(v_{2i}) = 5 \qquad t+2 \le i \le \frac{3t+1}{2}$ $f(u_{3t+3}) = 3 \qquad f(v_{3t+3}) = 2$ $f(u_{2i+1}) = 4 \qquad \frac{3t+3}{2} \le i \le 2t+1$ $f(u_{2i}) = 3 \qquad f(v_{2i}) = 7 \qquad \frac{3t+5}{2} \le i \le 2t+1$

It can be directly verified that two labels and two edge weights occur 't' times each and six labels and six edge weights occur 't+1' times each.

We give below a suitable labeling for t = 1 which corresponds to n = 7.

10. CAHIT – 8 – EQUITABLE LABELING OF $C_7 \circ K_1$

Here]	p = q = 1	4, t = 1, r	n = 7			
\mathbf{v}_1	v_2	v_3	v_4	V ₅	v ₆	v_7
3	1	5	2	2	1	3
7	0	5	0	6	4	4
u_1	\mathbf{u}_2	u ₃	\mathbf{u}_4	u ₅	u ₆	u_7

REFERENCES

- [1] D. G. Akka and Sanjay Roy. Cahit-7-equitability of Coronas $C_n \circ K_1$, International Journal of mathematical sciences and Applications, Vol. 1 No. 3 (2011)1609-1618.
- [2] G. S. Bloom, Problem posed at the Graph Theory meeting of the New York Academy of Sciences Nov.(1990).
- [3] V. N. Bhat–Nayak and Shanta Telang, Cahit– Equitability of Coronas, Ars Combinatoria, Vol.71 (2004) 3-32
- [4] L. Cahit, Status of graceful tree conjecture in 1989, in Topics in Combinatorics and Graph Theory, R. Bodendiek and R.Henn (eds), Physica-Verlag Heidelberg (1990)
- [5] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Mathematicae (1971)