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Abstract 
This paper proposes new processor architecture for accelerating data-parallel applications based on the combination of VLIW and 

vector processing paradigms. It uses VLIW architecture for processing multiple independent scalar instructions concurrently on 

parallel execution units. Data parallelism is expressed by vector ISA and processed on the same parallel execution units of the VLIW 

architecture. The proposed processor, which is called VLIW, has unified register file of 64x32-bit registers in the decode stage for 

storing scalar/vector data. VLIW can issue up to four scalar/vector operations in each cycle for parallel processing a set of operands 

and producing up to four results. However, it cannot issue more than one memory operation at a time, which loads/stores 128-bit 

scalar/vector data from/to data cache.. The complete design of our proposed VLIW processor is implemented using Verilog. our 

proposed VLIW processor is implemented using Verilog targeting the Xilinx FPGA Virtex-5, XC5VLX110T-3FF1136 device. The 

required numbers of slice registers and LUTs are 20292 and 24214 out of 28800 respectively.  
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1. INTRODUCTION 

Embedded systems have become common place nowadays 

and they are being utilized for many different applications 

such as image processing, computer vision, networking, 

wireless communication, etc. Because these applications offer 

a good amount of functional and data level parallelism, they 

can achieve better performance when run on multiprocessor 

systems rather than on uni-processor systems.  

 

Further, to exploit instruction level parallelism, very long 

instruction word (VLIW) processors can be utilized to increase 

the performance beyond the single issue or reduced instruction 

set computer (RISC) architectures [1].  

 

While RISC architectures only take advantage of temporal 

parallelism (by using pipelining), VLIW architectures can 

additionally take advantage of the spatial parallelism by using 

multiple functional units (FUs) to execute several operations 

simultaneously. VLIW multiprocessor systems (where each 

processor is a VLIW processor) can support both instruction 

level as well as data level parallelism.  

 

RISC architectures are simpler, cheaper and achieve high-

performance than CISCs; VLIW architectures require 

compiler support which performs most of the operations which 

was doing by hardware part in RISC. This reduction in 

hardware makes the VLIW simpler and cheaper than RISCs 

[3]. 

 

Superscalar means the ability to fetch, issue to execution units, 

and complete more than one instruction at a time [4, 5].. 

Superscalar implementations are required when architectural 

compatibility must be preserved. 

 

Two types of processors have become core for the processing 

platforms. The first type is RISC processors that have been 

used. They are flexible in the sense that they can be easily 

reprogrammed to support different applications, but they have 

several disadvantages.  

1)  There is a lot of control overhead to correctly 

sequence the code execution on these processors 

leading to wasted power consumption.  

2) To increase performance complex instruction fetch 

and decode mechanism are needed and in turn adding 

more to the power consumption.  

3) In order to make them more power efficient, new 

instructions are commonly introduced, but this 

requires a large amount of effort in adapting the 

existing tools and compilers to take full advantage of 

these instructions.  

 

The second type are VLIW processors that have gained a grip 

in embedded systems as they depend on compilers to schedule 

instruction execution and thereby overcoming the first and 

second disadvantages of RISC processors, as a result there is 

much more power efficient designs. 

 

Field-programmable gate arrays (FPGAs) have become a 

widely used tool, providing software like flexibility and 
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hardware-like performance. For an application to take 

advantage of performance improvement from FPGA 

implementations, it must possess inherent parallelism. 

Applications in different domains such as multimedia, 

bioinformatics, wireless communication, numerical analysis, 

etc. contain a high level of instruction level parallelism (ILP), 

as they have many independent repetitive calculations.  

 

By issuing multiple operations in one instruction, a VLIW 

processor is able to accelerate an application many times 

compared to a RISC system [1][2]. This is further enhanced by 

the fact that VLIW processors are simpler in design when 

compared to their more complex (out-of-order) RISC 

counterparts. 

 

2. BLOCK DIAGRAM OF GENERIC VLIW 

PROCESSOR 

VLIW architectures offer high performance at a much lower 

cost than dynamic out-of-order superscalar processors. By 

allowing the compiler to directly schedule machine resource 

usage, the need for expensive instruction issue logic is 

obviated. Furthermore, while the enormous complexity of 

superscalar issue logic limits the number of instructions that 

can be issued simultaneously, VLIW machines can be built 

with a large number of functional units allowing a much 

higher degree of instruction-level parallelism (ILP). VLIW 

instructions indicate several independent operations. Instead of 

using hardware for parallelism, VLIW processors use compiler 

that generates the VLIW code to clearly specify parallelism. 

 

 
 

Fig 1 Block diagram of generic VLIW implementation 

 

In VLIW complexity of hardware is moved to software. This 

trade-off has a benefit: only once the complexity is paid when 

the compiler is written instead of every time a chip is 

fabricated. Smaller chip, which leads to increased profits for 

the microprocessor vendor and/or cheaper prices for the 

customers. It’s easier to deal Complexity with in a software 

design than in a hardware design. Thus, the chip may cost less 

to design, be quicker to design, and may require less 

debugging, all of which are factors that can make the design 

cheaper. Improvements to the compiler can be made after 

chips have been fabricated; improvements to superscalar 

dispatch hardware require changes to the microprocessor, 

which naturally incurs all the expenses of turning a chip 

design. 

 

VLIW instruction format encodes an operation for every 

execution unit. This shows that every instruction will always 

have something useful for every execution unit. Unfortunately 

it’s not possible to pack every instruction with work for all 

execution units. Also, in a VLIW machine that has both 

integer and floating-point execution units, the best compiler 

would not be able to keep the floating point units busy during 

the execution of an integer-only application. 

 

The problem with some VLIW instructions is that they do not 

make full use of all execution units which results in waste of 

precious processor resources like waste of instruction memory 

space, instruction cache space, and bus bandwidth. 

 

There are two solutions to reduce the waste of resources. 

1) Instructions can be compressed with a more highly-

encoded representation. Different techniques, such as 

Huffman encoding can be employed  to allocate the 

fewest bits to the most frequently used operations. 

2) To define an instruction word that encodes fewer 

operations than the number of available execution 

units.  

 

2.1 Generic Architecture of VLIW Processor 

Each 128-bit VLIW instruction word consists of two 

operations. The architecture is built such that two operations 

cane be executed in parallel to maximize the performance 

ability. Each operation uses a register file. Register file consist 

a set of sixteen internal registers each are of 64-bit. 

 

 
 

Fig 2 Block diagram of VLIW architecture 
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On multiple execution units, this paper proposes new 

processor architecture for accelerating data-parallel 

applications by the combination of VLIW and vector 

processing paradigms. It is based on VLIW architecture for 

processing multiple scalar instructions concurrently. 

Moreover, data-level parallelism (DLP) is expressed 

efficiently using vector instructions and processed on the same 

parallel execution units of the VLIW architecture. Thus, the 

proposed processor, which is called, exploits ILP using VLIW 

instructions and DLP using vector instructions. The use of 

vector instruction set architecture (ISA) lead to expressing 

programs in a more concise and efficient way (high semantic), 

encoding parallelism explicitly in each vector instruction, and 

using simple design techniques (heavy pipelining and 

functional unit replication) that achieve high performance at 

low cost . Thus, vector processors remain the most effective 

way to exploit data-parallel applications 

 

Each operation is divided into four stages:  

1) Fetch stage 

2)  Decode stage 

3) Execute stage and  

4) Write back stage. 

 

Fetch stage:  The next instruction is fetched from the memory 

address that is currently stored in the program counter (PC), 

and stored in the instruction register (IR). At the end of the 

fetch operation, the PC points to the next instruction that will 

be read at the next cycle. 

 

Decode stage: interprets the instruction. During this cycle the 

instruction inside the IR (instruction register) gets decoded. 

 

Execute stage: The control unit of the CPU passes the 

decoded information as a sequence of control signals to the 

relevant function units of the CPU to perform the actions 

required by the instruction such as reading values from 

registers, passing them to the ALU to perform mathematical or 

logic functions on them, and writing the result back to a 

register. If the ALU is involved, it sends a condition signal 

back to the CU. 

 

Write back stage: The result generated by the operation is 

stored in the main memory, or sent to an output device. Based 

on the condition of any feedback from the ALU, Program 

Counter may be updated to a different address from which the 

next instruction will be fetched 

 

During the decode stage, data are read from the register file 

and during write back stage, data are written into the register 

file. Based on these requirements, the VLIW microprocessor is 

implemented. The incoming instructions and data from 

external systems to the VLIW microprocessor are fetched by 

the fetch unit. 

 

After the instruction and data have been fetched, it is given to 

the decode stage. The 128-bit instruction consists of two 

operations. Each operation is given to the corresponding 

decode stage. Each operation is also passed from the fetch 

stage to the register file to allow the data to be read from the 

register file for each corresponding operation. 

 

In the decode stage, the operations are decoded and passed 

onto the execute stage. The execute stage, as its name implies, 

will execute the corresponding decoded operation. The 

execute stage has access to the shared register file for reading 

of data during execution. Upon completion of execution of an 

operation, the final stage (write back stage) will write the 

results of the operation into the register file, or read data to the 

output of the VLIW microprocessor for read operation. 

 

2.2 Top Level Architecture 

Instructions and data are fetched using an external instruction 

memory that has its own instruction cache. The defined VLIW 

microprocessor loads instructions and data directly from the 

external instruction memory through the 6-bit bus interface 

word and the128-bit bus interface data. The output interface 

signal jump from the VLIW microprocessor is feedback as an 

input to the external instruction memory as an indicator that a 

branch has been taken and the instruction memory needs to 

pass another portion of instructions and data to the VLIW 

microprocessor. The top level architecture of VLIW processor 

is shown in the below figure. 

 

 
 

Fig 3 Top level architecture of VLIW 

 

3. IMPLEMENTATION RESULTS 

VLIW processor is implemented using Verilog targeting the 

Xilinx FPGA Virtex-5 device. A single Virtex-5 configurable 

logic blocks (CLB) comprises two slices, with each containing 

four 6-input LUTs and four flip-flops, for a total of eight 6-

LUTs and eight flip-flops per CLB. Virtex-5 logic cell ratings 

reflect the increased logic capacity offered by the new 6-input 

http://en.wikipedia.org/wiki/Program_counter
http://en.wikipedia.org/wiki/Instruction_register
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LUT architecture. The Virtex-5 family is the first FPGA 

platform to offer a real 6-input LUT with fully independent 

(not shared) inputs. By properly loading LUT, any 6-input 

combinational function can be implemented. Moreover, the 

LUT can also be Configured as a 64×1 or 32×2 distributed 

RAM. Besides, a single LUT supports a 32-bit shift register. 

See [6-9] 

 

Table 1 Synthesis result 

 

PARAMETER VIRTEX-5(XC5VLX50) 

No. of Slices 20292 out of 28800(70%) 

No. of slice LUTs 24214 out of 2880 (84%)   

No. of bonded IOBs 291 out of 440(66%)   

Minimum Period 4.073ns  

Maximum Frequency 245.531MHz 

 

4. CONCLUSIONS 

This paper proposes new processor architecture called VLIW 

for accelerating data-parallel applications. VLIW executes 

multi-scalar and vector instructions on the same parallel 

execution data path. VLIW has a modified five-stage pipeline 

for  fetching 128-bit VLIW instruction (four individual 

instructions),  decoding/reading operands of the four 

instructions packed in VLIW, executing four operations on 

parallel execution units, loading/storing 128- bit (4×32-bit 

scalar/vector) data from/to data memory, and  writing back 

4×32-bit scalar/vector results. Moreover, this paper presents 

the FPGA implementation of our proposed VLIW. 
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