
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 933

FPGA BASED 128-BIT CUSTOMISED VLIW PROCESSOR FOR

EXECUTING DUAL SCALAR/VECTOR INSTRUCTIONS

Rekha Halkatti
1
, Veeresh Pujari

2

1
Dept of MTECH VLSI and EMBEDDED SYSTEM, VTU Regional centre, Gulbarga

2
Dept of MTECH VLSI and EMBEDDED SYSTEM, VTU Regional centre, Gulbarga

Abstract
This paper proposes new processor architecture for accelerating data-parallel applications based on the combination of VLIW and

vector processing paradigms. It uses VLIW architecture for processing multiple independent scalar instructions concurrently on

parallel execution units. Data parallelism is expressed by vector ISA and processed on the same parallel execution units of the VLIW

architecture. The proposed processor, which is called VLIW, has unified register file of 64x32-bit registers in the decode stage for

storing scalar/vector data. VLIW can issue up to four scalar/vector operations in each cycle for parallel processing a set of operands

and producing up to four results. However, it cannot issue more than one memory operation at a time, which loads/stores 128-bit

scalar/vector data from/to data cache.. The complete design of our proposed VLIW processor is implemented using Verilog. our

proposed VLIW processor is implemented using Verilog targeting the Xilinx FPGA Virtex-5, XC5VLX110T-3FF1136 device. The

required numbers of slice registers and LUTs are 20292 and 24214 out of 28800 respectively.

Keywords—VLIW architecture; vector processing; data-level parallelism; FPGA/Verilog implementation

---***--

1. INTRODUCTION

Embedded systems have become common place nowadays

and they are being utilized for many different applications

such as image processing, computer vision, networking,

wireless communication, etc. Because these applications offer

a good amount of functional and data level parallelism, they

can achieve better performance when run on multiprocessor

systems rather than on uni-processor systems.

Further, to exploit instruction level parallelism, very long

instruction word (VLIW) processors can be utilized to increase

the performance beyond the single issue or reduced instruction

set computer (RISC) architectures [1].

While RISC architectures only take advantage of temporal

parallelism (by using pipelining), VLIW architectures can

additionally take advantage of the spatial parallelism by using

multiple functional units (FUs) to execute several operations

simultaneously. VLIW multiprocessor systems (where each

processor is a VLIW processor) can support both instruction

level as well as data level parallelism.

RISC architectures are simpler, cheaper and achieve high-

performance than CISCs; VLIW architectures require

compiler support which performs most of the operations which

was doing by hardware part in RISC. This reduction in

hardware makes the VLIW simpler and cheaper than RISCs

[3].

Superscalar means the ability to fetch, issue to execution units,

and complete more than one instruction at a time [4, 5]..

Superscalar implementations are required when architectural

compatibility must be preserved.

Two types of processors have become core for the processing

platforms. The first type is RISC processors that have been

used. They are flexible in the sense that they can be easily

reprogrammed to support different applications, but they have

several disadvantages.

1) There is a lot of control overhead to correctly

sequence the code execution on these processors

leading to wasted power consumption.

2) To increase performance complex instruction fetch

and decode mechanism are needed and in turn adding

more to the power consumption.

3) In order to make them more power efficient, new

instructions are commonly introduced, but this

requires a large amount of effort in adapting the

existing tools and compilers to take full advantage of

these instructions.

The second type are VLIW processors that have gained a grip

in embedded systems as they depend on compilers to schedule

instruction execution and thereby overcoming the first and

second disadvantages of RISC processors, as a result there is

much more power efficient designs.

Field-programmable gate arrays (FPGAs) have become a

widely used tool, providing software like flexibility and

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 934

hardware-like performance. For an application to take

advantage of performance improvement from FPGA

implementations, it must possess inherent parallelism.

Applications in different domains such as multimedia,

bioinformatics, wireless communication, numerical analysis,

etc. contain a high level of instruction level parallelism (ILP),

as they have many independent repetitive calculations.

By issuing multiple operations in one instruction, a VLIW

processor is able to accelerate an application many times

compared to a RISC system [1][2]. This is further enhanced by

the fact that VLIW processors are simpler in design when

compared to their more complex (out-of-order) RISC

counterparts.

2. BLOCK DIAGRAM OF GENERIC VLIW

PROCESSOR

VLIW architectures offer high performance at a much lower

cost than dynamic out-of-order superscalar processors. By

allowing the compiler to directly schedule machine resource

usage, the need for expensive instruction issue logic is

obviated. Furthermore, while the enormous complexity of

superscalar issue logic limits the number of instructions that

can be issued simultaneously, VLIW machines can be built

with a large number of functional units allowing a much

higher degree of instruction-level parallelism (ILP). VLIW

instructions indicate several independent operations. Instead of

using hardware for parallelism, VLIW processors use compiler

that generates the VLIW code to clearly specify parallelism.

Fig 1 Block diagram of generic VLIW implementation

In VLIW complexity of hardware is moved to software. This

trade-off has a benefit: only once the complexity is paid when

the compiler is written instead of every time a chip is

fabricated. Smaller chip, which leads to increased profits for

the microprocessor vendor and/or cheaper prices for the

customers. It’s easier to deal Complexity with in a software

design than in a hardware design. Thus, the chip may cost less

to design, be quicker to design, and may require less

debugging, all of which are factors that can make the design

cheaper. Improvements to the compiler can be made after

chips have been fabricated; improvements to superscalar

dispatch hardware require changes to the microprocessor,

which naturally incurs all the expenses of turning a chip

design.

VLIW instruction format encodes an operation for every

execution unit. This shows that every instruction will always

have something useful for every execution unit. Unfortunately

it’s not possible to pack every instruction with work for all

execution units. Also, in a VLIW machine that has both

integer and floating-point execution units, the best compiler

would not be able to keep the floating point units busy during

the execution of an integer-only application.

The problem with some VLIW instructions is that they do not

make full use of all execution units which results in waste of

precious processor resources like waste of instruction memory

space, instruction cache space, and bus bandwidth.

There are two solutions to reduce the waste of resources.

1) Instructions can be compressed with a more highly-

encoded representation. Different techniques, such as

Huffman encoding can be employed to allocate the

fewest bits to the most frequently used operations.

2) To define an instruction word that encodes fewer

operations than the number of available execution

units.

2.1 Generic Architecture of VLIW Processor

Each 128-bit VLIW instruction word consists of two

operations. The architecture is built such that two operations

cane be executed in parallel to maximize the performance

ability. Each operation uses a register file. Register file consist

a set of sixteen internal registers each are of 64-bit.

Fig 2 Block diagram of VLIW architecture

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 935

On multiple execution units, this paper proposes new

processor architecture for accelerating data-parallel

applications by the combination of VLIW and vector

processing paradigms. It is based on VLIW architecture for

processing multiple scalar instructions concurrently.

Moreover, data-level parallelism (DLP) is expressed

efficiently using vector instructions and processed on the same

parallel execution units of the VLIW architecture. Thus, the

proposed processor, which is called, exploits ILP using VLIW

instructions and DLP using vector instructions. The use of

vector instruction set architecture (ISA) lead to expressing

programs in a more concise and efficient way (high semantic),

encoding parallelism explicitly in each vector instruction, and

using simple design techniques (heavy pipelining and

functional unit replication) that achieve high performance at

low cost . Thus, vector processors remain the most effective

way to exploit data-parallel applications

Each operation is divided into four stages:

1) Fetch stage

2) Decode stage

3) Execute stage and

4) Write back stage.

Fetch stage: The next instruction is fetched from the memory

address that is currently stored in the program counter (PC),

and stored in the instruction register (IR). At the end of the

fetch operation, the PC points to the next instruction that will

be read at the next cycle.

Decode stage: interprets the instruction. During this cycle the

instruction inside the IR (instruction register) gets decoded.

Execute stage: The control unit of the CPU passes the

decoded information as a sequence of control signals to the

relevant function units of the CPU to perform the actions

required by the instruction such as reading values from

registers, passing them to the ALU to perform mathematical or

logic functions on them, and writing the result back to a

register. If the ALU is involved, it sends a condition signal

back to the CU.

Write back stage: The result generated by the operation is

stored in the main memory, or sent to an output device. Based

on the condition of any feedback from the ALU, Program

Counter may be updated to a different address from which the

next instruction will be fetched

During the decode stage, data are read from the register file

and during write back stage, data are written into the register

file. Based on these requirements, the VLIW microprocessor is

implemented. The incoming instructions and data from

external systems to the VLIW microprocessor are fetched by

the fetch unit.

After the instruction and data have been fetched, it is given to

the decode stage. The 128-bit instruction consists of two

operations. Each operation is given to the corresponding

decode stage. Each operation is also passed from the fetch

stage to the register file to allow the data to be read from the

register file for each corresponding operation.

In the decode stage, the operations are decoded and passed

onto the execute stage. The execute stage, as its name implies,

will execute the corresponding decoded operation. The

execute stage has access to the shared register file for reading

of data during execution. Upon completion of execution of an

operation, the final stage (write back stage) will write the

results of the operation into the register file, or read data to the

output of the VLIW microprocessor for read operation.

2.2 Top Level Architecture

Instructions and data are fetched using an external instruction

memory that has its own instruction cache. The defined VLIW

microprocessor loads instructions and data directly from the

external instruction memory through the 6-bit bus interface

word and the128-bit bus interface data. The output interface

signal jump from the VLIW microprocessor is feedback as an

input to the external instruction memory as an indicator that a

branch has been taken and the instruction memory needs to

pass another portion of instructions and data to the VLIW

microprocessor. The top level architecture of VLIW processor

is shown in the below figure.

Fig 3 Top level architecture of VLIW

3. IMPLEMENTATION RESULTS

VLIW processor is implemented using Verilog targeting the

Xilinx FPGA Virtex-5 device. A single Virtex-5 configurable

logic blocks (CLB) comprises two slices, with each containing

four 6-input LUTs and four flip-flops, for a total of eight 6-

LUTs and eight flip-flops per CLB. Virtex-5 logic cell ratings

reflect the increased logic capacity offered by the new 6-input

http://en.wikipedia.org/wiki/Program_counter
http://en.wikipedia.org/wiki/Instruction_register

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 936

LUT architecture. The Virtex-5 family is the first FPGA

platform to offer a real 6-input LUT with fully independent

(not shared) inputs. By properly loading LUT, any 6-input

combinational function can be implemented. Moreover, the

LUT can also be Configured as a 64×1 or 32×2 distributed

RAM. Besides, a single LUT supports a 32-bit shift register.

See [6-9]

Table 1 Synthesis result

PARAMETER VIRTEX-5(XC5VLX50)

No. of Slices 20292 out of 28800(70%)

No. of slice LUTs 24214 out of 2880 (84%)

No. of bonded IOBs 291 out of 440(66%)

Minimum Period 4.073ns

Maximum Frequency 245.531MHz

4. CONCLUSIONS

This paper proposes new processor architecture called VLIW

for accelerating data-parallel applications. VLIW executes

multi-scalar and vector instructions on the same parallel

execution data path. VLIW has a modified five-stage pipeline

for fetching 128-bit VLIW instruction (four individual

instructions), decoding/reading operands of the four

instructions packed in VLIW, executing four operations on

parallel execution units, loading/storing 128- bit (4×32-bit

scalar/vector) data from/to data memory, and writing back

4×32-bit scalar/vector results. Moreover, this paper presents

the FPGA implementation of our proposed VLIW.

REFERENCES

[1] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and F.

Homewood, "Lx: A Technology Platform for

Customizable VLIW Embedded Processing", in

Proceedings of the 27th Annual International

Symposium of Computer Architecture (ISCA 00), pp.

203 - 213, 2000.

[2] S. Wong, T.V. As, and G. Brown, "ρ-VEX: A

Reconfigurable and Extensible Soft-core VLIW

Processor", in IEEE International Conference on Field-

Programmable Technologies (ICFPT 08), pp. 369 -

372, 2008.

[3] J. Mike, Superscalar Microprocessor Design, Prentice

Hall (Prentice Hall Series in Innovative Technology),

1991.

[4] J. Smith and G. Sohi, “The micro architecture of

superscalar processors,” Proceedings of the IEEE, vol.

83, no. 12, pp. 1609-1624, December 1995.

[5] J. Fisher, P. Faraboschi, and C. Young, Embedded

Computing: A VLIW Approach to Architecture,

Compilers and Tools, Morgan Kaufmann, 2004.

[6] Philips, Inc., An Introduction to Very-Long Instruction

Word (VLIW) Computer Architecture, Philips

Semiconductors, 1997.

[7] A. Cosoroaba and F. Rivoallon, “Achieving higher

system performance with the Virtex-5 family of

FPGAs,” White Paper: Virtex-5 Family of FPGAs,

Xilinx WP245 (v1.1.1), July 2006.

[8] A. Percey, “Advantages of the Virtex-5 FPGA 6-Input

LUT architecture,” White Paper: Virtex-5 FPGAs,

Xilinx WP284 (v1.0), December 2007.

[9] Virtex-5 FPGA User Guide UG190 (v5.4), March

2012.

