
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 929

FINE–GRAINED ANALYSIS AND PROFILING OF SOFTWARE BUGS TO

FACILITATE WASTE IDENTIFICATION AND ITS MINIMIZATION

S.R. Subramanya
1

1
School of Engineering and Computing, National University, San Diego, CA 92123, USA

Abstract
Software defects or bugs are among the primary causes of software development overrunning time schedules and budget costs. They

are also the major cause of ‘waste’ in software development, which roughly translates to time, effort, and money spent on

unproductive aspects of software. Despite several developments in software engineering and improvements in the software

development process, their effects in minimizing the waste in software development process have not been remarkable in comparison

with the hardware counterpart of complex chip design. This paper proposes a fine–grained approach to the analysis of the root causes

of software defects (bugs) in an effort to better quantify the components of waste and its subsequent minimization. It also proposes the

use of bugs profile for the allocation of resources to tackle bugs with minimal wasted resources.

Keywords: Software bugs, Fine–grained analysis, Waste in software, Waste identification, Waste minimization

--***--

1. INTRODUCTION

The development and maintenance of any software of

reasonable complexity is necessarily a human–intensive, time

consuming, and expensive process. Faults (bugs) are

introduced into the software system in a variety of ways.

Despite several developments in software engineering and

improvements in the software development process, their

effects in minimizing the faults (bugs) in software and thereby

improving the reliability has not been remarkable in

comparison with the design and development of complex

microprocessor chips, and their reliability.

The complete avoidance of bugs may not be possible for real–

world software systems, primarily due to the fact that software

development is a complex, human-intensive process.

However, methodologies which would minimize the

introduction of bugs into the source code in the first place (as

much as possible) would be highly beneficial for reducing the

high software development and maintenance costs, and for

increasing the quality of software.

Numerous studies have been done in effective software testing

to enable the detection of most (if not all) of the bugs. For

example, 28 best practices that contribute to improved

software testing are listed in [3]. Numerous efforts have been

put into finding methods for preventing developers from

inadvertently introducing bugs [4, 5]. Several studies have

been done to predict occurrences of bugs. For example, a

methodology using software bug history data to model and

predict future bug occurrences is presented in [10]. In addition

to code reviews, proactively improving code quality using

static and dynamic analysis is given in [2]. Analysis of some

of the root causes of bugs along different dimensions such as

(a) management–related, (b) design–related, (c)

programming–related, and (d) human–factors–related, is given

in [9]. Results from various studies have been compiled into

an extremely useful and interesting list of ten items containing

statistics and causes of several kinds of software defects, and

means of their reduction, and is presented in [1].

It is now a well–known fact that when defects are found later

in the development lifecycle, they are going to take

(exponentially) more time and cost more money to fix them

than if they were discovered sooner. Since software bugs are

the primary „components‟ of waste, it would thus be beneficial

to identify and eliminate (or at least minimize) bugs early in

the process, thereby minimizing waste in the overall

development process. In order to do this, this paper presents a

methodology of „fine-grained‟ analysis of the causes of bugs,

leading to the fine, measurable granular–causes which make

up the causes. These granular-causes are better understood and

steps can then be devised to tackle them. In addition, using the

Pareto principle, the bugs can be analyzed, and the allocation

of resources can be optimized to tackle the bugs.

The next section gives brief background on the development

of waste in software. Section 3 presents the proposed fine–

grained analysis of the factors contributing to software bugs to

derive granular causes and their use in expressing the causes

of bugs. Section 4 describes the use of profiling to determine

the hot spot modules contributing to bugs and a case of putting

resources for tackling bugs in them, which is followed by

conclusions.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 930

2. BACKGROUND

The notion of waste in manufacturing was popularized by the

Toyota Production System. Since then numerous studies have

been done to adapt the notions of waste and their

elimination/minimization in the domain of software. The

notion of waste in software development can be traced to [7]

where the term lean software development was introduced. [8]

gives a translation of the seven identified wastes in a

manufacturing system into the seven wastes of Software

Development, namely: Partially Done Work, Extra Features,

Relearning, Handoffs, Delays, Task Switching, and Defects.

Examples of waste in software, motivators for waste

reduction, counter measures to development waste are

presented in [6]. A common underlying theme contributing to

waste in software is that of faults/defects/bugs. The effective

avoidance, prediction, detection, and correction of bugs have

been elusive, and have been the subject of numerous studies.

3. FINE-GRAINED ANALYSIS OF FACTORS OF

BUGS

In the proposed scheme of fine-grained analysis of bugs, first,

the major factors in orthogonal dimensions which cause bugs

are determined. Then, each of these factors is analyzed in

detail to determine numerous issues – the granular causes –

which contribute to the given factor. Each of the granular

causes should be simple enough for amenable solution(s).

Since each of the granular causes for a given factor may not be

independent, we need to find their interdependencies and find

their collective effect on the factor causing the bug.

Fig -1: Examples of causes of bugs

First, as an example, we consider five major dimensions

responsible for the introduction of bugs (faults) (see Figure 1),

namely, (A) lack of clear understanding of existing code; (B)

unclear design; (C) lack of established processes; (D) team

members‟ coordination issues; (E) project management issues.

Fig -2: Examples of two causes of bugs and their composition

in terms of granular causes

Figure 2 shows two of the example causes of bugs and the

granular causes for each of them. This is also shown in Table

1. For example the „unclear design‟ aspect contributing to the

bugs has, in turn, six granular causes namely, (a) unclear

requirements, (b) unclear specifications, (c) lack of

communications, (d) absence of design review, (e) lack of

proper design methodologies, and (f) lack of proper design

documents. This is shown in Table 1.

Table -1: Two example factors and corresponding granular

causes related to software bugs

Factors Granular causes

Lack of

understanding

of existing code

Complexity of algorithm

Complexity of interactions

Lack of good programming style

Inadequate documentation

Poor quality of code

Lack of experience

Lack of competence

Lack of peer support

Lack of time

Unclear design

Unclear requirements

Unclear specifications

Lack of communications

Absence of design review

Lack of design methodologies

Lack of elaborate design documents

We will now present the relationship of content consumption

experience parameters with the other parameters of the factors

influencing the content consumption experience. The causes

of bugs, X is given by:

MEETDDPCCDBBUAAX '''''  ,

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 931

where U, D, P, T, and M are vectors of granular causes

corresponding respectively to the major example factors of

causes of bugs, namely, lack of clear understanding of existing

code (U); unclear design (D); lack of established processes

(P); team members’ coordination issues (T); project

management issues (M).





















Nxx

x

x

X


2

1

is a vector of parameters corresponding to the causes of bugs.

These parameters are as non–overlapping (orthogonal) as

possible.





















Niu

u

u

U


2

1

is a vector of granular causes related to the “lack of clear

understanding of existing code” factor of bugs causes. The

granular causes, may in turn, consist of a set of attributes, each

of which will have a defined range of values. The other

vectors D, P, T, and M are similarly defined.























NiNxNxNx

Ni

Ni

aaa

aaa

aaa

A

,2,1,

,22,21,2

,12,11,1









is an ix NN 
cross correlation matrix whose elements

capture the dependences among the granular causes of U and

the parameters of X.























NiNiNiNi

Ni

Ni

aaa

aaa

aaa

A

,2,1,

,22,21,2

,12,11,1

'''

'''

'''

'









is an ii NN 
matrix whose elements represent the correlation

among the granular causes of U.

Therefore,





























































NiNiNiNiNi

Ni

Ni

NiNxNxNx

Ni

Ni

U

U

U

aaa

aaa

aaa

aaa

aaa

aaa

UAA


















2

1

,2,1,

,22,21,2

,12,11,1

,2,1,

,22,21,2

,12,11,1

'

which yields a
1xN

vector which captures the dependences

among the granular causes of U (lack of clear understanding

of existing code) as well as their dependence on the

parameters of X (bugs causes). The other products, BB’D,

CC’P, DD’T, and EE’M are similarly defined. The sum of all

these products thus represents the effects of the granular

causes of lack of clear understanding of existing code, unclear

design, lack of established processes, team members‟

coordination issues, and project management issues, upon the

causes of bugs.

Thus, in essence, the proposed scheme expresses the causes of

bugs in terms a few (orthogonal) parameters. The parameters

are expressed in terms of several factors of bugs causes, and

each of the factors is expressed in terms of granular causes,

each of which is simple and measurable. This facilitates the

understanding of the complex relationships among the

granular causes and their combined effect on the causes of

bugs. This can be used to device methods to minimize waste

in terms of time and effort in detecting and correcting bugs, as

well as in proactively having measures to minimize (avoid)

introduction of bugs in the first place.

4. PROFILING OF BUGS

In this section, we present the profiling of bugs so that the

distribution of bugs across different modules in huge software

can be determined, and also predicted. This enables

minimization of waste by optimal allocation of resources to

proactively and effectively tackle the bugs.

The Pareto principle, named after Italian economist Vilfredo

Pareto, (also known as the 80-20 rule or the law of the vital

few) states that, for many phenomena, 80% of the

consequences stem from 20% of the causes. For example, 80%

of income goes to 20% of the population, 80% of the sales

come from 20% of the products, 80% of the resources are

typically used by 20% of the operations, we wear our 20%

most favored clothes about 80% of the time, etc.

In software engineering, it is also often the case that 80% of

the development effort is spent in 20% of the system

(modules), 80% of the execution time of a computer program

is spent executing 20% of the code, 80% of the debugging

time/effort is taken by 20% of the bugs, etc. Thus, it is

important to identify the „critical‟ 20% parts – the hotspots,

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 932

which need the most attention in terms of improvements.

Improvements to this critical 20% of the software system (or

process) would result in improvements in the 80% of the result

that this system influences.

For example, the modules which account for the most

faults/bugs can be identified, and made the targets for

improvements.

4.1 Fault/bug Profiles

It is beneficial to perform „bug profiling‟ – to determine which

modules cause the most number of bugs. Distribution of bugs

across various modules of a mobile handset software is shown

in Figure 3. This is based on the actual data from the QM

(quality management) group running black-box tests on the

software during development. It is interesting to note that the

distribution follows the Pareto principle – about 20% of the

modules account for about 80% of the bugs. Of course, the

number of bugs that are caused by a given module depend

upon a complex set of factors including (i) how complex a

module is, (ii) how clear the specifications are, (iii) how many

persons are involved in the development of the module and

their experience, (iv) the number of other modules that this

module interacts with, etc. The important thing to be learned is

that of predicting the bugs that a module could cause and

taking appropriate actions proactively. For example, assigning

experienced engineers, allocation of more resources as

necessary, spending more effort in better design, etc., would

help in minimizing the bugs, and hence the time and effort

wasted.

Fig -1: Distribution of bugs reported by QM for a mobile

handset software during development

In the long term, it is also beneficial to study correlations

between bugs and other factors such as the base lines used,

number of newer features implemented, number of files

touched, number of deliveries, etc. These facilitate bug

predictions, and appropriate proactive solutions. Another

experiment of interest is to study the spread of bugs among

modules / functions, i.e., a new bug arising in a module due to

a change or new code in a module results in a previously

unknown bug appearing in another module. Detailed analysis

of the results could be used beneficially in the design of

modules with less coupling.

5. CONCLUSIONS

Software defects or bugs are the major causes of „waste‟ in

software development translating to time, effort, and money

spent on unproductive aspects of software. This paper

proposed a fine–grained approach to the analysis of the root

causes of software defects (bugs) in an effort to better quantify

the components of waste and its subsequent minimization. It

also proposed the use of bugs profile for allocating of

resources to tackle bugs using minimal resources, contributing

to reduced waste.

REFERENCES

[1]. B. Boehm and V.R. Basili, “Software Defect Reduction

Top 10 List”, IEEE Computer, January 2001, pp135–137.

[2]. K.A. Briski, et. al., “Minimizing Code Defects to Improve

Software Quality and Lower Development Costs”, IBM

Development Solutions Whitepaper, Oct. 2008.

[3]. R. Chillarege, “Software Testing Best Practices”, IBM

Research Technical Report, RC 21457, April 1999.

[4]. D. Huizinga and A. Kolawa, “Automated Defect

Prevention: Best Practices in Software Management”, Wiley–

IEEE Computer Society Press (ISBN 0470042125).

[5]. M. McDonald, R. Musson, and R. Smith, “The Practical

Guide to Defect Prevention”, Microsoft Press (ISBN

0735622531).

[6]. “The Yin and Yang of Software Development: 5 Best

Practices that Allow Efficiency and Creativity to Productively

Coexist”, Parasoft White Paper, 2013.

[7]. M. Poppendieck and T. Poppendieck, Lean Software

Development: An Agile Toolkit, Addison-Wesley, 2003.

[8]. M. Poppendieck and T. Poppendieck, Implementing Lean

Software Development: From Concept to Cash. Addison-

Wesley, 2006

[9]. S.R. Subramanya, “Analysis of Some of the Root Causes

of Bugs in a Mobile Phone Software Development

Environment”, International Conference on Computer

Applications in Industry and Engineering, Honolulu, HI, Nov.

16–18, 2011, pp. 210–215.

[10]. C. Zhang, H. Joshi, S. Ramaswamy and C. Bayrak, “A

Dynamic Approach to Software Bug Estimation”, in Advances

in Computer and Information Sciences and Engineering,

Springer, 2008 (978-1-4020-8741-7).

