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Abstract

Convective flow and heat transfer between vertical wavy wall and a parallel flat wall consisting of two regions, one filled with
electrically conducting and other with viscous fluid is analyzed. Governing equation of motion have been solved by linearization
technique. Results are presented for various parameters such as Hartmann number, Grashof number, viscosity ratio, width ratio,
conductivity ratio and source or sink. The effect of all the parameters except the Hartmann number and source or sink remains same
for two viscous immiscible fluids. The effect of Hartmann number is to decrease the velocity at the wavy and flat wall. The suppression
near the flat wall compared to wavy wall is insignificant. The velocity is large for source compared to sink for equal and different wall
temperature.
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1. INTRODUCTION steady-flow regime, the average Nusselt numbers for the
wavy-wall channel were only slightly larger than those for a
parallel-plate channel. The problem of natural or mixed
convection along a sinusoidal wavy surface extended previous
work to complex geometries Yao (1983), Moulic et.al.,
(1989,1989) and has received considerable attention due to its
relevance to real geometries. An example of such geometry is
a “roughened” surface that occurs often in problem involving
the enhancement of heat transfer.

Many transport process exists in natural and industrial
applications in which the transfer of heat and mass occurs
simultaneously as a result of buoyancy effect of thermal
diffusion. Natural convection heat transfer plays an important
role in the electronic components cooling since it has desirable
characteristics in thermal equipments design; absence of
mechanical or electromagnetic noise; low energy
consumption, very important in portable computers; and

reliability, since it has no elements to fail. The flow and heat transfer of electrically conducting fluids in

channels under the effect of a transverse magnetic field occurs
in MHD-generators, pumps, accelerators, nuclear-reactors,
filtration, geo-thermal system and others. Recently there are
experimental and theoretical studies on hydromagnetic aspects
of two fluid flows available in literature. Lohrasbi and Sahai
(1998) dealt with two-phase magnetohydrodynamic (MHD)
h h Al flow and heat transfer in a parallel plate channel. Two-phase
literature Landon et.al (192_)9) Da Silva et.al., (2004). '_I'hls is, MHD flow and heat transfer in an inclined channel is
probably, due to th(_e non-_llnear nature and to the difficult of investigated by Malashetty and Umavathi (1997). Recently
natural convection simulation. Malashetty et.al, (2000, 2001) analyzed the problem of fully
developed two fluid magnetohydrodynamic flows with and
without applied electric field in an inclined channel.
Chamakha (2000) considered the steady, laminar flow of two
viscous, incompressible electrically conducting and heat
generating or absorbing immiscible fluids in an infinitely —
long, impermeable parallel-plate channel filled with a uniform
porous medium.

The optimization of the heat transfer has increasingly
importance in electronic packaging due to the higher heat
densities and to the electronic components and equipments
miniaturization Sathe et.al. (1998). In spite of the abundant
results about natural convection in electronic packaging,
works dealing with heat transfer maximization is scarce in

The corrugated wall channel is one of several devices
employed for enhancing the heat transfer efficiency of
industrial transport process. The problem of viscous flow in
wavy channels was first treated analytically by Burns and
Parks (1967) who expressed the stream function as a Fourier
series under the assumption of stokes flow. Wang and Vanka
(1995) determined the rates of heat transfer for flow through a
periodic array of wavy passages. They observed that in the
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In spite of the numerous applications of corrugated walls,
much work is not seen in literature. Hence it is the objective of
the present work, is to study the problem of flow and heat
transfer between vertical wavy wall and a parallel flat wall
consisting of two regions, one filled with electrically
conducting fluid and second with electrically non-conducting
fluid.

2. MATHEMATICAL FORMULATION
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Fig-1: Physical Configuration

Consider the channel as shown in figure 4.1, in which the X
axis is taken vertically upwards and parallel to the flat wall
while the Y axis is taken perpendicular to it in such a way that

the wavy wall is represented by Y =—h™® + g£* cos KX and
the flat wall byY =h®). The region 0 <y < h® is occupied
by viscous fluid of density p(l), viscosity y(l), thermal
conductivity k@ and the region h® < y <0 is occupied
another viscous fluid of density p(z), viscosity ,u(z), thermal

conductivity k(z). The wavy and flat walls are maintained at
constant and different temperatures T,, and T, respectively.
We make the following assumptions:

(1 that all the fluid properties are constant except
the density in the buoyancy-force term;

(i) that the flow is laminar, steady and two-
dimensional;

(iii) that the viscous dissipation and the work done by
pressure are sufficiently small in comparison
with both the heat flow by conduction and the
wall temperature;

(iv) that the wavelength of the wavy wall, which is
proportional to 1/K, is large.

Under these assumptions, the equations of momentum,
continuity and energy which govern steady two-dimensional
flow and heat transfer of viscous incompressible fluids are
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Where the superscript indicates the quantities for regions I and
I, respectively. To solve the above system of equations,
one needs proper boundary and interface conditions. We
assume CS):C(DZ)

The physical hydro dynamic conditions are
u® =0 v®=op, at Y =—h® 4 £"coskX
U@ =0 v®@ =, at Y=h®

uo® —y® yo =V(2), atY =0

<1> @)
[N NV @ N NV aty =0 (2.9)
Y ox Y o
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The boundary and interface conditions on temperature are

TO _T, at Y =-h® + g coskX

T@ =T, at Y =h®

TO _T@ at Y=0

O] LI e el ﬂ atY -0 (2.10)
E 8X oy 6X

The conditions on velocity represent the no-slip condition and
continuity of velocity and shear stress across the interface. The
conditions on temperature indicate that the plates are held at
constant but different temperatures and continuity of heat and
heat flux at the interface.

The basic equations (4.2.1) to (4.2.8) are made dimensionless
using the following transformations

1 1 h% (1)
(x,y) ¥ = =y — (XY (uv)? = ¥eY ——(UV)

h(2)
(X,y)(Z) (X Y)(Z) (U V)(z) — V(Z) (U ,V)(Z)
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so__ PP so__ PP i

NORG NORE
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Where T is the fluid temperature in static conditions.
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The dimensionless form of equation (2.9) and (2.10) using
(2.11) become

u® =0; v@ =0 at y=-1+ecosix
u®=0; v@=0 a y=1

1 1

rmh rmh

(au avj(” 1 (au avj(z)
—4+=| =——|=—+=| ay=0

oy OX rm’h*{ oy ox
(2.20)
oY =1 at y=—1+&£C0SAX
0? =g at y=1
oW =02 ay=0
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o0 o0\" k(oo o00\?
4 =—| —+— aty:O (2.21)
oy oOX hloy ox

3. SOLUTIONS

The governing equations (2.12) to (2.15), (2.16) to (2.19)
along with boundary and interface conditions (2.20) to (2.21)
are two dimensional, nonlinear and coupled and hence closed
form solutions can not be found. However approximate
solutions can be found using the method of regular
perturbation. We take flow field and the temperature field to
be

Region-I

u®@(x,y)=u”(y)+zu(x,y)

v (x,y) = eviV (x,y)
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Region -11
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P (x,y)=P?(x)+eR? (x,y)
0D(x.y)=02(y)+£0{"(x.y) 32)

Where the perturbations ul(i), 1(i), Pl(i)and Ol(i) for
=1, 2 are small compared with the mean or the zeroth order

guantities. Using equation (4.3.1) and (4.3.2) in the equation
(2.12) to (2.15), (2.16) to (2.19) become

3.1 Zeroth Order
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() (2) 1 _ g2 _
Where ¢ :Wamj c® =8(PO5XPS) o o aty=0
taken equal to zero (see Ostrach, 1952). With the help of (3.1) 06" 00 k(o6 06
and (3.2) the boundary and interface conditions (2.20) to + P :F 2 aty=0
(2.21) become oy X oy X
(3.18)
u$’ (-1)=0 a y=-1 _
Introducing the stream function , defined by
(2) _
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1 OX
ul =—uf? at y=0
Fmh W g p@
And eliminating P and P*’ from equation (3.7), (3.8) and
du® du®® 3.11), (3.12) we get
LI %2 0 at y=0 (3.15) (3.11). (312) we g
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2 (1) — _ (i) _ . aix i) (i) iaxg(i)
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And using (3.24) in (3.20) to (3.23), we get
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Below we restrict our attention to the real parts of the solution
for the perturbed quantities lﬁgl,)ﬁl('),u{')and Vl(') for
=12

The boundary conditions (3.17) and (3.18) can be now written
in terms of

7O ©) —
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If we consider small values of A then substituting
7" (A y)=vs) + 2+ 2% -

0 (2 y) =t 5 2t 4 2240 4
for 1 =1,2 (3.32) in to (3.26) to (3.31) gives, to order of A,

the following sets of ordinary differential equations and
corresponding boundary and interface conditions
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3.3 Zeroth-Order Solution (Mean Part)

The solutions to zeroth order differential Egs. (3.3) to (3.6)
using boundary and interface conditions (3.15) and (3.16) are
given by

ttgl) =Gy +C,
Region-I
ug? =lyt Ly +ly? + Ay + A,
oY =d,y* +C,y+C,
Region-I1
ul? = B, coshny + B, sinhny +s,y* +s,y +s,
eéZ) = f,y*+C,y+C,
The solutions of zeroth and first order of A are obtained by

solving the equation (3.33) to (3.40) using boundary and
interface conditions (3.41) and (3.42) and are given below

7% —I4y“+%y3+%y2+/’sy+/\5

ys? =B, coshny + B, sinhny + B,y + B, +s,y*

tc(JZ) =Cy+GC,

@ _; 10 9 8 7 6 5 4
A =1 (oY +100Y° + oo + gy +15,Y° sy + 1y
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t® =iPr(dyy +dgy® +d,oy° +dy,y* +dy,y° +dy,y°)
t0sY + 0

w? =B, coshny + B,sinhny + B,y + B, +

i (szgy3 coshny +s,,y° sinhny +s,,y* cosh ny

+s,, ¥ sinh ny +s,,y cosh ny +s,, ysinh ny +
S, COSh Ny + s, sinhny +S,,y® + S, y° +

Sse¥* +S40Y° +S,,Y?)

) = Ilf_n:( f,, ycoshny + f,, ysinhny + f,; coshny

+ f, sinhny + f0y° + fey* +f,y% + flsyz)
+0sy+07

The first order quantities can be put in the forms

U, = Sin A X—y, COSAX

v, = Ay, sinAX— Ay cos A x

6, =t, cosAxX—t; SinAx

Region-I

Y 4 sinA X (Wi + Ay )(1)

ul =—cos A x (g, +Ayy,)
v =—2cos AX(wy + Ay, )(1) — ASiNAX(yy, + Ay, )(1)
0 = cos Ax(ty, + At,, ) —sin Ax (t, + 2t )

1 — Or r Oi i

Region-11

U =—cos (g, + 4y ) +sin Ax(y + v )

V& =—2c0s X (o + Ay, )(2) — ASiNAX(wy, + Ay, )(2)

O =cos AxX(t,, +At,, )(2) —sin AX(ty + At )(2)

4, RESULTS AND DISCUSSION
4.1 Discussion of the Zeroth Order Solution:

The effect of Hartmann number M on zeroth order velocity is
to decrease the velocity for & =0, =1, but the suppression
is more effective near the flat wall as M increases as shown in
figure 2.

The effect of heat source (a > 0) or sink(a < 0) and in the
absence of heat source or sink (azO), on zeroth order

velocity is shown in figure 3 for @ =0,£1. It is observed
that heat source promote the flow, sink suppress the flow, and

the velocity profiles lie in between source or sink fora =0.
We also observe that the magnitude of zeroth order velocity is

optimum for @ =1 and minimal for 6 =—1, and profiles

lies between @ = =1 for & = 0. The effect of source or sink
parameter ¢ on zeroth order temperature is similar to that on
zeroth order velocity as shown in figure 4. The effect of free
convection parameter G, viscosity ratio m, width ratio h, on
zeroth order velocity and the effect of width ratio h,
conductivity ratio k, on zeroth order temperature remain the
same as explained in chapter-111

The effect of free convection parameter G on first order
velocity is shown in figure.5. As G increases u; increases near
the wavy and flat wall where as it deceases at the interface and

the suppression is effective near the flat wall for € =0, +1.

The effect of viscosity ratio m on u; shows that as m increases
first order velocity increases near the wavy and flat wall, but
the magnitude is very large near flat wall . At the interface
velocity decreases as m increases and the suppression is
significant towards the flat wall as seen in figure 6 for

0= 0,%1. The effect of width ratio h on first order velocity
u; shows that u; remains almost same for h<l but is more
effective for h>1. For h = 2, u, increases near the wavy and
flat wall and drops at the interface, for 6 = 0,%1 as seen in
figure 7.

The effect of Hartmann number M on u; shows that as M
increases velocity decreases at the wavy wall and the flat wall
but the suppression near the flat wall compared to wavy wall
is insignificant and as M increases u, increases in magnitude

at the interface for 0 = 0,%1 as seen in figure 8. The effect
of & on uy is shown in figure 9, which shows that velocity is
large near the wavy and flat wall for heat source ¢ =5 and is

less for heat sink ¢ =—5. Similar result is obtained at the
interface but for negative values of u;. Here also we observe
that the magnitude is very large near the wavy wall compared
to flat wall.
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The effect of convection parameter G, viscosity ratio m, width
ratio h, thermal conductivity ratio k on first order velocity v, is
similar as explained in chapter Ill. The effect of Hartmann
number M is to increase the velocity near the wavy wall and
decrease velocity near the flat wall for&@ =0,£1, whose
results are applicable to flow reversal problems as shown in
figure.10. The effect of source or sink on first order velocity v,
is shown in figure 11. For heat source, v, is less near wavy
wall and more for flat wall where as we obtained the opposite
result for sink i.e. v; is maximum near wavy wall and
minimum near the flat wall, forac =0 the profiles lie in
between ¢ =5

The effect of convection parameter G, viscosity ratio m, width
ratio h, thermal conductivity ratio k, Hartmann number and
source and sink parameter ¢ on first order temperature are
shown in figures 12 to 17. It is seen that G, m, h, and k

increases in magnitude for values of @ = 0,+£1. It is seen that
from figure 16 that as M increases the magnitude of 6?1

decreases for @ =0,+1. Figure 17 shows that the magnitude
of « is large for heat source and is less for sink whereas 6,

remains invariant for ¢ =0 .

The effect of convection parameter G, viscosity ratio m, width
ratio h, and thermal conductivity ratio k, on total velocity
remains the same as explained in chapter Ill. The effect of
heat source or sink on total velocity shows that U is very large

for ¢ =5 compared to @@ =—5 and is almost invariant for
a =0 as seen figure 18, for all values of @ .

The effect of Grashof number G, viscosity ratio m, shows that
increasing G and m suppress the total temperature but the
supression for m is negligible as seen in figures.19 and 20.
The effects of width ratio h and conductivity ratio k is same as
explained in chapter-1ll. The effect of source or sink
parameter on total temperature remains the same as that on
total velocity as seen figure.21.

Where
d,=-al2; f,=—aQnh?/k; f,=11/2
c, - U=0-dirbh. ¢ _g_c 1,
(k+h)
: Gd, .
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Iz—_Tl |3:_ 2 31: n2 ’

2,213
S:ert;Gcss

2
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n n n
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l, =(l,;ncoshn—I, )+l (sinhn—ncoshn)
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Fig. 14 First order temperature profiles for different values of h

Region-1 (wavy wall)

Region-I1 (flat wall)

-1.0 -0.5

0.00

-0.02

-0.06
- -0.08
-0.10
0.12

-0.14

-0.16

0.00
-0.02 3
-0.04
-0.06
-0.08
-0.10
-0.12
-0.14

-0.16

0.0 05 1.0

y
Fig. 15 First order temperature profiles for different values of k
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Fig. 16 First order temperature profiles for different values of M
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