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Abstract 
Convective flow and heat transfer between vertical wavy wall and a parallel flat wall consisting of two regions, one filled with 

electrically conducting and other with viscous fluid is analyzed. Governing equation of motion have been solved by linearization 

technique. Results are presented for various parameters such as Hartmann number, Grashof number, viscosity ratio, width ratio, 

conductivity ratio and source or sink. The effect of all the parameters except the Hartmann number and source or sink remains same 

for two viscous immiscible fluids. The effect of Hartmann number is to decrease the velocity at the wavy and flat wall. The suppression 

near the flat wall compared to wavy wall is insignificant. The velocity is large for source compared to sink for equal and different wall 

temperature.  
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1. INTRODUCTION 

Many transport process exists in natural and industrial 

applications in which the transfer of heat and mass occurs 

simultaneously as a result of buoyancy effect of thermal 

diffusion. Natural convection heat transfer plays an important 

role in the electronic components cooling since it has desirable 

characteristics in thermal equipments design; absence of 

mechanical or electromagnetic noise; low energy 

consumption, very important in portable computers; and 

reliability, since it has no elements to fail. 

 

The optimization of the heat transfer has increasingly 

importance in electronic packaging due to the higher heat 

densities and to the electronic components and equipments 

miniaturization Sathe et.al. (1998). In spite of the abundant 

results about natural convection in electronic packaging, 

works dealing with heat transfer maximization is scarce in 

literature Landon et.al (1999) Da Silva et.al., (2004). This is, 

probably, due to the non-linear nature and to the difficult of 

natural convection simulation. 

 

The corrugated wall channel is one of several devices 

employed for enhancing the heat transfer efficiency of 

industrial transport process. The problem of viscous flow in 

wavy channels was first treated analytically by Burns and 

Parks (1967) who expressed the stream function as a Fourier 

series under the assumption of stokes flow. Wang and Vanka 

(1995) determined the rates of heat transfer for flow through a 

periodic array of wavy passages. They observed that in the 

steady-flow regime, the average Nusselt numbers for the 

wavy-wall channel were only slightly larger than those for a 

parallel-plate channel. The problem of natural or mixed 

convection along a sinusoidal wavy surface extended previous 

work to complex geometries Yao (1983), Moulic et.al., 

(1989,1989) and has received considerable attention due to its 

relevance to real geometries. An example of such geometry is 

a “roughened” surface that occurs often in problem involving 

the enhancement of heat transfer. 

 

The flow and heat transfer of electrically conducting fluids in 

channels under the effect of a transverse magnetic field occurs 

in MHD-generators, pumps, accelerators, nuclear-reactors, 

filtration, geo-thermal system and others. Recently there are 

experimental and theoretical studies on hydromagnetic aspects 

of two fluid flows available in literature. Lohrasbi and Sahai 

(1998) dealt with two-phase magnetohydrodynamic (MHD) 

flow and heat transfer in a parallel plate channel. Two-phase 

MHD flow and heat transfer in an inclined channel is 

investigated by Malashetty and Umavathi (1997). Recently 

Malashetty et.al, (2000, 2001) analyzed the problem of fully 

developed two fluid magnetohydrodynamic flows with and 

without applied electric field in an inclined channel. 

Chamakha (2000) considered the steady, laminar flow of two 

viscous, incompressible electrically conducting and heat 

generating or absorbing immiscible fluids in an infinitely –

long, impermeable parallel-plate channel filled with a uniform 

porous medium. 
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In spite of the numerous applications of corrugated walls, 

much work is not seen in literature. Hence it is the objective of 

the present work, is to study the problem of flow and heat 

transfer between vertical wavy wall and a parallel flat wall 

consisting of two regions, one filled with electrically 

conducting fluid and second with electrically non-conducting 

fluid. 

 

2. MATHEMATICAL FORMULATION 

 
 

Fig-1: Physical Configuration 

 

Consider the channel as shown in figure 4.1, in which the X 

axis is taken vertically upwards and parallel to the flat wall 

while the Y axis is taken perpendicular to it in such a way that 

the wavy wall is represented by KXcos*hY )(  1
 and 

the flat wall by
)(hY 2 . The region 

 1
0 y h   is occupied 

by viscous fluid of density
 1

 , viscosity
 1

 , thermal 

conductivity 
 1

k  and the region 
 2

0h y   is occupied 

another viscous fluid of density
 2

 , viscosity
 2

 , thermal 

conductivity
 2

k . The wavy and flat walls are maintained at 

constant and different temperatures Tw and T1 respectively. 

We make the following assumptions:  

(i) that all the fluid properties are constant except 

the density in the buoyancy-force term; 

(ii) that the flow is laminar, steady and two-

dimensional; 

(iii) that the viscous dissipation and the work done by 

pressure are sufficiently small in comparison 

with both the heat flow by conduction and the 

wall temperature; 

(iv) that the wavelength of the wavy wall, which is 

proportional to 1/K, is large. 

 

Under these assumptions, the equations of momentum, 

continuity and energy which govern steady two-dimensional 

flow and heat transfer of viscous incompressible fluids are 
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Where the superscript indicates the quantities for regions I and 

II, respectively.      To solve the above system of equations, 

one needs proper boundary and interface conditions. We 

assume  1

pC =  2

pC  

 

The physical hydro dynamic conditions are 
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The boundary and interface conditions on temperature are 

 
(1)

WT T   at (1) *Y h cosKX    

 
(2)
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k k
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at 0Y                (2.10) 

 

The conditions on velocity represent the no-slip condition and 

continuity of velocity and shear stress across the interface. The 

conditions on temperature indicate that the plates are held at 

constant but different temperatures and continuity of heat and 

heat flux at the interface. 

 

The basic equations (4.2.1) to (4.2.8) are made dimensionless 

using the following transformations 
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Where Ts is the fluid temperature in static conditions. 
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The dimensionless form of equation (2.9) and (2.10) using 

(2.11) become 

 
(1) 0u  ;    

(1) 0v    at 1 cosy x     

 
(2) 0u  ;    

(2) 0v   at 1y   

 

(1) (2)1
u u

rmh
 ;

(1) (2)1
v v

rmh
       at 0y   

 
   2

22

1

x

v

y

u

hrm

1

x

v

y

u



































at 0y                                                                              

                                                                                 (2.20) 

 
(1) 1   at 1 cosy x     

 
(2)   at 1y   

 
(1) (2)   at 0y   



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org                                            780 

   21

xyh

k

xy 

































 
at 0y        (2.21) 

 

3. SOLUTIONS 

The governing equations (2.12) to (2.15), (2.16) to (2.19) 

along with boundary and interface conditions (2.20) to (2.21) 

are two dimensional, nonlinear and coupled and hence closed 

form solutions can not be found. However approximate 

solutions can be found using the method of regular 

perturbation. We take flow field and the temperature field to 

be  
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1,2i are small compared with the mean or the zeroth order 

quantities. Using equation (4.3.1) and (4.3.2) in the equation 

(2.12) to (2.15), (2.16) to (2.19) become 
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Where    
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taken equal to zero (see Ostrach, 1952). With the help of (3.1) 

and (3.2) the boundary and interface conditions (2.20) to 

(2.21) become 
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Introducing the stream function 1  defined by  
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And eliminating 
 1

1P  and 
 2

1P  from equation (3.7), (3.8) and 
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And using (3.24) in  (3.20) to (3.23), we get 
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3.3 Zeroth-Order Solution (Mean Part)  
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The first order quantities can be put in the forms 
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4. RESULTS AND DISCUSSION 

4.1 Discussion of the Zeroth Order Solution: 

The effect of Hartmann number M on zeroth order velocity is 

to decrease the velocity for 0, 1  ,  but the suppression 

is more effective near the flat wall as M increases as shown in 

figure 2. 

The effect of heat source  0  or sink  0  and in the 

absence of heat source or sink  0  , on zeroth order 

velocity is shown in figure 3 for 0, 1   . It is observed 

that heat source promote the flow, sink suppress the flow, and 

the velocity profiles lie in between source or sink for 0 . 

We also observe that the magnitude of zeroth order velocity is 

optimum for 1   and minimal for 1   , and profiles 

lies between 1   for 0  . The effect of source or sink 

parameter   on zeroth order temperature is similar to that on 

zeroth order velocity as shown in figure 4. The effect of free 

convection parameter G, viscosity ratio m, width ratio h, on 

zeroth order velocity and the effect of width ratio h, 

conductivity ratio k, on zeroth order temperature remain the 

same as explained in chapter-III 

 

The effect of free convection parameter G on first order 

velocity is shown in figure.5. As G increases u1 increases near 

the wavy and flat wall where as it deceases at the interface and 

the suppression is effective near the flat wall for 0, 1   . 

The effect of viscosity ratio m on u1 shows that as m increases 

first order velocity increases near the wavy and flat wall, but 

the magnitude is very large near flat wall . At the interface 

velocity decreases as m increases and the suppression is 

significant towards the flat wall as seen in figure 6 for 

0, 1   .   The effect of width ratio h on first order velocity 

u1 shows that u1 remains almost same for h<1 but is more 

effective for h>1. For h = 2,  u1 increases near the wavy and 

flat wall and drops at the interface, for 0, 1    as seen in 

figure 7. 

 

The effect of Hartmann number M on u1 shows that as M 

increases velocity decreases at the wavy wall and the flat wall 

but the suppression near the flat wall compared to wavy wall 

is insignificant and as M increases u1 increases in magnitude 

at the interface for 0, 1    as seen in figure 8. The effect 

of   on u1 is shown in figure 9, which shows that velocity is 

large near the wavy and flat wall for heat source 5   and is 

less for heat sink 5   . Similar result is obtained at the 

interface but for negative values of u1. Here also we observe 

that the magnitude is very large near the wavy wall compared 

to flat wall. 
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The effect of convection parameter G, viscosity ratio m, width 

ratio h, thermal conductivity ratio k on first order velocity v1 is 

similar as explained in chapter III. The effect of Hartmann 

number M is to increase the velocity near the wavy wall and 

decrease velocity near the flat wall for 0, 1   , whose 

results are applicable to flow reversal problems as shown in 

figure.10. The effect of source or sink on first order velocity v1 

is shown in figure 11. For heat source, v1 is less near wavy 

wall and more for flat wall where as  we obtained the opposite 

result for sink i.e. v1 is maximum near wavy wall and 

minimum near the flat wall, for 0   the profiles lie in 

between 5    

 

The effect of convection parameter G, viscosity ratio m, width 

ratio h, thermal conductivity ratio k, Hartmann number and 

source and sink parameter   on first order temperature are 

shown in figures 12 to 17. It is seen that G, m, h, and k 

increases in magnitude for values of 0, 1   . It is seen that 

from figure 16 that as M increases the magnitude of 1  

decreases for 0, 1   . Figure 17 shows that the magnitude 

of   is large for heat source and is less for sink whereas 1  

remains invariant for 0  . 

 

The effect of convection parameter G, viscosity ratio m, width 

ratio h, and thermal conductivity ratio k, on total velocity 

remains the same as explained in chapter III. The effect of 

heat source or sink on total velocity shows that U is very large 

for 5   compared to 5    and is almost invariant for 

0   as seen figure 18, for all values of . 

 

The effect of Grashof number G, viscosity ratio m, shows that  

increasing G and m suppress the total temperature but the 

supression for m is negligible as seen in figures.19 and 20. 

The effects of width ratio h and conductivity ratio k is same as 

explained in chapter-III. The effect of source or sink 

parameter on total temperature remains the same as that on 

total velocity as seen figure.21. 

 

Where 

1 / 2d   ; 2

1 /f Qh k  ; 
2 1 / 2f f  

 

 
 hk

hfd
C




 21

3

1 ; 
234 fCC  ; 

 

42 CC   
121 1 dCC  ;    

12

1
1

Gd
l  ; 

 

6

1
2

GC
l  ; 

2

2
3

GC
l    

2

2

322

1
n

Gfhrm
s


 ; 

 

2

3

322

2
n

GChrm
s


  

n

GChrm

n

Gfhrm
s

2

4

322

4

2

322

3

2 



  

 

24

5
4

CG
l  ;  

2 2 3

7
4 2

.m r h G C
s

n


    

22

2

5

6

hrm

n
l


 ; 

rmh

n
l

4
6  ; 

rmh
l

4
7  ; 

228

6

hrm
l   

 

 

32122

4
419 468

6
22 lll

hrm

s
lAl   

 

  

  

10 7 6

7 5

cosh sinh cosh

sinh sinh cosh

l n n n l n n l

l n n l n n n

   

 
 

 

   11 7 6 8cosh sinh cosh   l l n n l l n n n  

 

   12 9 4 7 6sinh cosh coshl l n n n s l n n l     

 

2 1 5 4d l C l  ;   3
3 2 5 1 6 1 4

6

A
d l C l C C l


     

 

1 34
4 3 5 2 8

2 6

C AA
d l C l C


    ; 

 

1 4
5 1 5 3 6 4

2

C A
d A C l C A     

 

6 2 5 1 6 6 1 5d A C AC A C A    ; 

 

7 2 6 1 6d A C C A      
8 2 / 42d d ; 

 

9 3 / 30d d ;  10 4 / 20d d  

 

11 5 /12d d ; 12 6 / 6d d ; 

 

13 7 / 2d d  
3 1 7 3 1f B C B f  ; 

 

4 2 7 4 1f B C B f  ; 
5 1 8 3 3f B C B C   

 

6 2 8 4 3f B C B C  ; 
7 1 7 4 1f s C s C   

 

8 2 7 1 8 5 1 4 3f s C s C B f s C    ; 

 

9 3 7 2 8 6 1 5 3f s C s C B f B C     

 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org                                            786 

10 3 8 3 6f s C C B  ;       
2

11 3 /f f n ; 

 

2

12 4 /f f n   54
13 3 2

2
ff

f
n n

 
   

 

; 

 

3 6

14 3 2
2

f f
f

n n

 
   

 

 
15 7 / 20f f  

 

16 8 /12f f ; 17 9 / 6f f ; 

 

18 10 / 2f f  

 

 1 8 9 10 11 12 3Prq d d d d d d        

 

   11 13 12 14

2

15 16 17 18

cosh sinhPr f f n f f n
q

km f f f f

    
      

 

 

 3 13

Pr
q f

km
 ;   4 14 11

Prk
q f n f

h km
   

 

 1 2 3 4
5

q q q q h
q

k h

  



; 5

6 4

kq
q q

h
  ; 

 

 7 5 2q q q   ;  8 6 1q q q  ;
2

13 Pr
6

d
l G ; 

 

3
14 1 3 2 4 1 3 2 412 2 6 Pr

5

d
l l A l l l A l l G      

 

4
15 1 4 2 3 3 4 1 4 2 3 3 412 6 2 Pr

4

d
l l A l A l l l A l A l l G        

 

16 2 4 3 3 1 4 1 5

3 5
2 4 3

12 12

3 Pr
3 3

l l A l A A l l A

A d
l A l G

    

 

 

 

17 3 4 1 3 2 4 1 6

6
2 5 3 4

12 12

6 Pr
2

l l A A A A l l A

d
l A l A G

    

 

 

 

18 1 4 2 3 2 6 3 5 76 2 Prl A A A A l A l A G d     ;

19 2 4 3 6 62l A A l A Gq    

 

13
20

5040

l
l 

; 14
21

3024

l
l  ; 15

22
1680

l
l  ; 

 

16
23

840

l
l  ;         17

24
360

l
l  ;              18

25
120

l
l  ; 

 

19
26

24

l
l  ;     

2 2

5 1 3 1 4s s B n B s n  ; 

 
2 2

6 1 4 2 4s s B n B s n  ; 

 

2 2 2 2 3
7 2 3 1 5 12

Pr
s s B n B B n m r h f

km


 
   
 

 

 

2 2 2 2 3
8 2 4 2 5 11

Pr
s s B n B B n m r h f

km


 
   
 

 

 



 

2 2 2

9 3 3 1 6 1 4 1 3

2 2 3

11 14 1 4

2

Pr
2

s s B n B B n B s n s B

m r h f f n B s
km



    


 



 

 



 

2 2 2

10 3 4 2 6 2 4 1 4

2 2 3

12 13 2 4

2

Pr
2

s s B n B B n B s n s B

m r h f f n B s
km



    


 



 

 

2 2 3
11 15

Pr
5s f m r h G

km
 ; 2 2 3

12 16

Pr
4s f m r h G

km
  

 

2 2 3
13 17

Pr
3s f m r h G

km
 ; 

 

2 2 3

14 18 1 5 2 4

Pr
2 2 2s f m r h G s B s s

km
    

 

2 2 3

15 1 6 1 4 5 3 42 2 2s s B s s m r h Gq s s     ; 6
16

6

s
s

n
 ; 

 

5
17

6

s
s

n
 ;   5 8

18 2 44

s s
s

nn
   ; 6 7

19 2 44

s s
s

nn
   ;  

 

6 7 10
20 3 2 24 4

s s s
s

nn n
    

 

5 8 9
21 3 2 24 4

s s s
s

nn n
   ;   5 8

22 4 38 8

s s
s

n n
   ;  

 

6 7
23 4 38 8

s s
s

n n
   ;  

11
24 2

s
s

n
  ;  

12
25 2

s
s

n
  ;  

 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org                                            787 

1311
26 4 2

12 ss
s

n n
   ; 12 14

27 4 2

6 s s
s

n n
    

 

13 1511
28 6 4 2

224 s ss
s

n n n
    ; 

16
29 2

s
s

n
 ; 

 

17
30 2

s
s

n
 ;  17 17 18

31 3 4 2

3 3s s s
s

n n n
    ; 

 

16 16 19
32 3 4 2

3 3s s s
s

n n n
     

 

16 16 17 19 20
33 4 5 4 3 2

6 12 6 4s s s s s
s

n n n n n
     ; 

 

16 17 17 18 21
34 4 5 4 3 2

6 12 6 4s s s s s
s

n n n n n
      

 

16 17 17 18 21 22
35 5 5 6 4 3 2

12 6 18 6 2s s s s s s
s

n n n n n n


       

 

17 16 16 19 20 23
36 5 5 6 4 3 2

12 6 18 6 2s s s s s s
s

n n n n n n


       

 

24
37

30

s
s  ; 25

38
20

s
s  ; 26

39
12

s
s  ; 27

40
6

s
s   

 

28
41

2

s
s   

 

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10







Region-II (flat wall)Region-I (wavy wall)

M = 6

M = 4

M = 2

y

 = -1.0 

 =  0.0 

 =  1.0 

Fig. 2 Zeroth order velocity profiles for different values of Hartmann number M

 

 
u

0

 

-1.0 -0.5 0.0 0.5 1.0
-10

-5

0

5

10







 = 5

 = 0

 = -5

Region-II (flat wall)
Region-I (wavy wall)

y

 = -1.0 

 =  0.0 

 =  1.0 

Fig. 3  Zeroth order velocity profiles for different values of 

 

 
u

0

 
 

-1.0 -0.5 0.0 0.5 1.0
-9

-6

-3

0

3

6

9







 = 5

 = 0

 = -5

Region-II (flat wall)Region-I (wavy wall)

y

 = -1.0 

 =  0.0 

 =  1.0 

Fig. 4  Zeroth order temperature profiles for different values of 

 

 



 
 

-1.0 -0.5 0.0 0.5 1.0

-0.16

-0.08

0.00

0.08

0.16







G = 15

G = 10

G = 5

u
1

Fig. 5 First order velocity profiles for different values of Grashof number G

Region-II (flat wall)Region-I (wavy wall)

 = -1.0 

 =  0.0 

 =  1.0 

y

 

 
 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org                                            788 

-1.0 -0.5 0.0 0.5 1.0

-0.04

0.00

0.04

0.08

y





 = -1.0 

 =  0.0 

 =  1.0 

2.0

2.0

m = 2.0

m = 1.0

m=0.1

Fig. 6  First order velocity profiles for different values of viscosity ratio m

u
1

Region-II (flat wall)Region-I (wavy wall)

 

 

 
 

-1.0 -0.5 0.0 0.5 1.0

-0.6

-0.3

0.0

0.3

0.6

y

 = -1.0 

 =  0.0 

 =  1.0 







h = 2.0

u
1

Fig. 7 First order velocity profiles for different values of width ratio h

Region-II (flat wall)Region-I (wavy wall)

 

 

 
 

-1.0 -0.5 0.0 0.5 1.0
-0.04

-0.02

0.00

0.02

y

 = -1.0 

 =  0.0 

 =  1.0 







M = 6

M = 4

M = 2

u
1

Fig. 8  First order velocity profiles for different values of M

Region-II (flat wall)Region-I (wavy wall)

 

 

 
 

-1.0 -0.5 0.0 0.5 1.0

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

 = -1.0 

 =  0.0 

 =  1.0 







 = 5

 = -5

 = 0

y

u
1

Fig. 9 First order velocity profiles for different values of 

Region-II (flat wall)Region-I (wavy wall)

 

 

 

-1.0 -0.5 0.0 0.5 1.0
-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

y

 = -1.0 

 =  0.0 

 =  1.0 







M = 6

M = 4

M = 2

Fig. 10  First order velocity profiles for different values of M

v 1

Region-II (flat wall)Region-I (wavy wall)

 

 

 
 

-1.0 -0.5 0.0 0.5 1.0

-0.015

-0.010

-0.005

0.000

0.005

0.010

y







 = -1.0 

 =  0.0 

 =  1.0 






Fig. 11 First order velocity profiles for different values of 
v 1

Region-II (flat wall)Region-I (wavy wall)

 
 

 
 

-1.0 -0.5 0.0 0.5 1.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0 





 = -1.0 

 =  0.0 

 =  1.0 

15

15

10

10

G = 5

G = 10

G = 15




Fig. 12 First order temperature profiles for different values of G

Region-II (flat wall)Region-I (wavy wall)

y

 

 
 

-1.0 -0.5 0.0 0.5 1.0

-0.16

-0.12

-0.08

-0.04

0.00

y







 = -1.0 

 =  0.0 

 =  1.0 

2.0

2.0

1.0

0.1

0.1

m = 0.1

m = 1.0

m = 2.0




Fig. 13  First order temperature profiles for different values of m

Region-II (flat wall)Region-I (wavy wall)

 

 

 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org                                            789 

-1.0 -0.5 0.0 0.5 1.0

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

y

h = 2.0





 = -1.0 

 =  0.0 

 =  1.0 

h = 0.1,0.5

Fig. 14  First order temperature profiles for different values of h


1

Region-II (flat wall)Region-I (wavy wall)

 

 

 
 

-1.0 -0.5 0.0 0.5 1.0
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0 k = 1

k = 0.5

k = 0.1

y







 = -1.0 

 =  0.0 

 =  1.0 




Fig. 15  First order temperature profiles for different values of k

Region-II (flat wall)Region-I (wavy wall)

 

 

 
 

-1.0 -0.5 0.0 0.5 1.0

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00







 = -1.0 

 =  0.0 

 =  1.0 

y

6

6

4

4

 2

 2

M = 6

M = 4

M = 2

Fig. 16  First order temperature profiles for different values of M




Region-II (flat wall)Region-I (wavy wall)

 

 

 
 

-1.0 -0.5 0.0 0.5 1.0

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

y







 = -1.0 

 =  0.0 

 =  1.0 


















Fig. 17  First order temperature profiles for different values of 
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