
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 338

DESIGN AND VERIFICATION ENVIRONMENT FOR AMBA AXI

PROTOCOL FOR SOC INTEGRATION

Pradeep S R
1
, Laxmi C

2

1
M.Tech Student, Department of P.G Studies, VTU Gulbarga, Karnataka, India

2
Guest Lecturer, Department of P.G Studies, VTU Gulbarga, Karnataka, India

Abstract
Advanced microcontroller bus architecture (AMBA) protocol family provides a metric-driven verification of protocol compliance,

enabling the comprehensive testing of interface intellectual property (IP) blocks and system-on-chip (SoC) design. The AMBA

advanced extensible interface 4 (AXI4) update to AMBA AXI3 includes: the support for burst lengths up to 256 beats. It is updated

write response requirements and removal of locked transactions. Verification has become the dominant cost in the design process.

This paper proposes a work, how to build up the verification environment of AXI bus using SystemVerilog is introduced. Functional

coverage, score-boarding and assertions is implemented with the proposed integrated verification environment.

Keywords: AMBA, AXI, Verification, System Verilog etc…

---***---

1. INTRODUCTION

There are many companies that develop core IP for SoC

products. The interfaces to these cores can differ from

company to company and may generally be proprietary in

nature. The SoC developer then should expend time, effort,

and cost to make “bridge” or “glue” logic that enables all of

the cores within the SoC to communicate properly with each

other. Incompatible interfaces are therefore barriers to each IP

developers and SoC developers.

Integrated circuits have entered the era of System-on-a-Chip

(SoC), which refers to integrating all components of a

computer or other electronic system into a single chip. It

contains digital, analog, mixed signal, and often radio-

frequency functions – all on a single chip substrate. By

increasing the design size, IP is an inevitable alternative for

SoC design. And therefore the widespread use of all kinds of

IPs has changed the nature of the design flow, making On-

Chip Buses (OCB) essential to the design.

To speed up SoC integration and promote IP reusability, many

bus-based communication architecture standards have

emerged over the past several years. Since the first 1990s,

many onchip bus-based communication architecture standards

are projected to handle the communication needs of emerging

SoC design. Some of the popular standards include ARM

Microcontroller Bus Architecture (AMBA) versions of 2.0 and

3.0, IBM Core Connect, STMicroelectronics STBus, Sonics

SMARRT Interconnect, Open Cores Wishbone, and Altera

Avalon [2]-[6]. On the other side, the designers simply

integrate their owned IPs with third party IPs into the SoC to

significantly reduce design cycles. However, the main issue is

that a way to efficiently ensure the IP functionality, that works

properly after integrating to the corresponding bus

architecture.

The AMBA AXI protocol is a standard bus protocol and most

of the semiconductor companies‟ design interconnects which

supports AXI bus interface. AXI protocol is complex protocol

because of its ultra-high-performance. On current projects,

verification engineers are maximum number designers, with

this ratio reaching 2 or 3 to one for the most complex designs.

Therefore an efficient verification environment is needed [9].

Verification of such a complex protocol is challenging. This

can be easily verified using the verification environment. This

verification environment can be reused for other IPs also.

1.1 AMBA AXI4 Architecture

The AMBA AXI protocol is aimed towards high-frequency

system designs and includes a number of features that make it

suitable for a high - speed submicrons interconnect. In this

project proposes a feature that supports a maximum of 256

data transfers per burst [3]. In AMBA AXI4 system 16

masters and 16 slaves are interfaced. Every master and slave

has their own 4 bit ID tags. The system consists of master,

slave and Interconnect bus [4]. The AXI4 protocol supports

the following mechanisms:

•Two kinds of address mode: aligned and unaligned.

•Three types of burst: FIXED, INCR and WRAP.

•Sixteen choices of burst length in the range of 1-256.

•Four varieties of response types: OKAY, EXOKAY,

SLVERR and DECERR.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 339

Figure 1gives the information of signals used in the complete

design of the protocol [3]. Each transaction is burst-based

which has address and control information on the address

channel that describes the nature of the data to be transferred.

The information is transferred between master and slave using

a write data channel to the slave or a read data channel to the

master [8].

Signal Source
Input/

Output
Description

Aclk Global Input Global Clock Signal

Aresetn Global Input Global Reset Signal

AWID[3:0] Master Input Write address ID

AWADDR[31:0] Master Input Write address

AWLEN[3:0] Master Input Write burst length

AWSIZE[2:0] Master Input Write burst size

AWBURST[1:0] Master Input Write burst type

AWLOCK[1:0] Master Input Write lock type

AWCACHE[1:0] Master Input Write cache type

AWPROT[2:0] Master Input Write protection

WDATA[31:0] Master Input Write data

ARID[3:0] Master Input Read address ID

ARADDR[31:0] Master Input Read address

ARLEN[3:0] Master Input Read burst length

ARSIZE[2:0] Master Input Read burst size

ARLOCK[1:0] Master Input Read lock type

ARCACHE[3:0] Master Input Read cache type

ARPROT[2:0] Master Input Read protection

RDATA[31:0] Master Input Read data

WLAST Master Input Write last

RLAST Slave Output Read last

AWVALID Master Output Write address valid

AWREADY Slave Output Write address ready

WVALID Master Output Write valid

RVALID Slave Output Read valid

WREADY Slave Output Write ready

BID[3:0] Slave Output Write response ID

RID[3:0] Slave Output Read response ID

BRESP[1:0] Slave Output Write response

RRESP[1:0] Slave Output Read response

BVALID Slave Output

Write Response

valid

BREADY Master Output Response Ready

RVALID Slave Output Read valid

Fig -1: Signal descriptions of AMBA AXI Protocol

2. RELATED WORK

The Advanced Microcontroller Bus Architecture (AMBA) is a

protocol that is used as an open standard; on-chip

interconnects specification for the connection and

management of functional blocks in a system-on-chip (SoC).

The AMBA bus is applied easily to small scale SoCs.

Therefore, the AMBA bus has been the representative of the

SOC market though the bus efficiency.

Three distinct buses are defined within the AMBA

specification:

1. Advanced Peripheral Bus (APB).

2. Advanced High performance Bus (AHB).

3. Advanced extensible Interface Bus (AXI).

The AMBA specification defines all the signals, transfer

modes, structural configuration, and other bus protocol details

for the APB, AHB, and AXI buses.

The AMBA APB is used for interface to any peripherals

which are low bandwidth and do not require the high

performance of a pipelined bus interface. APB peripherals can

be integrated easily into any design flow, with the following

specification:

• Peripheral bus for low-speed devices

• Synchronous, non multiplexed bus

• Single master (bridge)

• 8, 16, 32-bit data bus

• 32-bit address bus

• Non-pipelined

AMBA AHB is a new level of bus which sits above the APB

and implements the features required for high performance,

high clock frequency systems, with the following

specification:

• Burst transfers

• Split transactions

• Single cycle bus master handover

• Single clock edge operation

• Wider data bus configurations (64/128 bits)

AXI extends the AHB bus with advanced features to support

the next generation of high performance SoC designs. The

goals of the AXI bus protocol include supporting high

frequency operation without using complex bridges, flexibility

in meeting the interface, and performance requirements of a

diverse set of components, and backward compatibility with

AMBA AHB and APB interfaces. The features of the AXI

protocol are:

• Separate address/control and data phases

• Support for unaligned data transfers

• Ability to issue multiple outstanding addresses

• Out-of-order transaction completion.

3. PROPOSED WORK

The work is proposed in this project is the achievement of

communication between one master and one slave using

Verilog, then verifying the design using System Verilog.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 340

3.1 Design of AXI Protocol

AMBA AXI4 slave is designed with operating frequency of

100MHz, which gives each clock cycle of duration 10ns and it

supports a maximum of 256 data transfers per burst. The

AMBA AXI4 system component consists of a master and a

slave as shown in Figure 2.

There are 5 different channels between the AXI master and

AXI slave namely write address channel, write data channel,

read data channel, read address channel, and write response

channel.

Fig -2: Block Diagram of a system

 In AXI protocol, every transfer is done using hand shake

mechanism. Each channel uses the same VALID/READY

handshake to transfer control and data information. This two-

way flow control mechanism enables both the master and

slave to control the rate at which the data and control

information moves. The source generates the VALID signal to

indicate when the data or control information is available. The

destination generates the READY signal to indicate that it

accepts the data or control information. Transfer occurs only

when both the VALID and READY signals are HIGH. There

must be no combinatorial paths between input and output

signals on both master and slave interfaces.

3.1.1 Address Write Channel (AW Channel)

AXI_MASTER drives the write command signals only when

ARESETn is HIGH, else it drives all signals as zero. The

address write command signals driven by the AXI_MASTER

are - AWID,AWADDR, AWBURST, AWLEN, AWSIZE,

AWCACHE, AWLOCK, AWPROT, with AWVALID as

HIGH indicating that the driven signals are valid. The

AXI_MASTER does not drive the AWVALID signal as

LOW, until it receives the AWREADY signal, which is driven

by the DESTINATION_SLAVE, indicating that, it has

received the address write command signals. If AWREADY is

LOW, then AXI_MASTER retains the same values. Figure 3

shows the state diagram for the address write command

signals.

Fig -3: State diagram of Address Write Channel

3.1.2 Write Data Channel (W Channel)

 The AXI MASTER drives these Write Data signals, after

sending the write address command signals. It drives these

signals, only when ARESETn is HIGH, otherwise it drives all

signals to zero. AXI MASTER drives the WDATA signal with

WVALID as HIGH, it holds the same value until it receives

the WREADY signal. If WREADY is HIGH, it drives the next

WDATA. AXI MASTER drives the AWLEN No. of data.

While driving the last data it drives the WLAST as HIGH.

Figure 4 shows the state diagram for the WRITE DATA

channels.

Fig -4: State diagram of Write Data Channel

3.1.3 Write Response Channel (B Channel)

The DESTINATION_SLAVE drives these Write Response

signals, only when ARESETn is HIGH, otherwise it drives all

signals as zero. DESTINATION_SLAVE waits for WLAST

signal. After receiving the WLAST signal, it drives these

response signals, with BVALID as HIGH. It holds the same

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 341

value until it receives the BREADY signal from the AXI

MASTER. If BREADY is HIGH, it drives all the signals as

zero, at next positive edge of ACLK, otherwise it retains the

same value. Figure 5 shows the state diagram for the Write

Response channels.

Fig -5: State diagram of Write Response Channel

3.1.4 Address Read Channel (AR Channel)

AXI_MASTER drives the command signals only when

ARESETn is HIGH, else it drives all signals as zero. The

address read command signals driven by the AXI_MASTER

are - ARID, ARADDR, ARBURST, ARLEN, ARSIZE,

ARCACHE, ARLOCK, ARPROT, with ARVALID as HIGH

indicating that the driven signals are valid. The

AXI_MASTER does not drive the ARVALID signal as LOW,

until it receives the ARREADY signal, which is driven by the

SOURCE_SLAVE, indicating that, it has received the address

read command signals. If ARREADY is LOW, then

AXI_MASTER retains the same values. Figure 6 shows the

state diagram for the address read command signals.

Fig -6: State diagram of Address Read Channel

3.1.5 Read Data Channel (R Channel)

The SOURCE_SLAVE drives these Read Data signals after

receiving the read command signals. It drives these signals,

only when ARESETn is HIGH, otherwise it drives all signals

as zero. SOURCE_SLAVE drives the RDATA signal with

RVALID as HIGH, it holds the same value until it receives the

RREADY signal. If RREADY is HIGH, it drives the next

RDATA. SOURCE_SLAVE drives the ARLEN No. of data.

While driving the last data it drives the RLAST as HIGH.

Figure 7 shows the state diagram for the read data signals.

Fig -7: State diagram of Read Data Channel

3.2 Verification Environment of AXI Protocol

The verification environment for AXI bus is developed with

SystemVerilog, this verification environment is shown in

below Figure 8. This environment is organized in a

hierarchical layered structure which helps to maintain and

reuse it with different designs under verification.

Fig -8: The Testbench Architecture

The main aim is to verify the design “AXI”, by applying

different inputs.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 342

3.2.1 Test Case

The „Test case‟ includes the list of test cases. Each test case is

connected to the “sequences” which written for the different

scenarios like, single_write_operation, single_read_operation,

write_followed_read_operation, multiple_write_single_read,

single_wite_multiple_read, etc., Any one of the test case is

connected to the Verification Environment to verify the design

for a particular scenario.

3.2.2 AXI_Transaction_Generator

Transaction generator is also known as the “sequence item”.

Sequence_item is a class which includes all the port signals as

its property. All these signals are declared using a “rand”

keyword, so that after calling the randomize function this class

should assign the random value to the each signal. This

generated input values are assigned later to the DUV.

3.2.3 AXI_Master_Transaction

It includes the signals which are driven from the master. This

class has the instance of the AXI_transaction_generator. The

master transaction can override the values that are generated in

the AXI_transaction_generator. Suppose we have not over

ridden any signals, then the values that are generated in the

AXI_transaction_generator are passed to the DUV.

3.2.4 AXI_Slave_Transaction

It includes the functionality similar to

AXI_Master_Transaction, except it includes the signals which

are driven from the slave.

3.2.5 AXI_Scoreboard

The values generated in the AXI_Master_Transaction and

AXI_Slave_Transaction are also stored in the

AXI_scoreboard. Later we can use these signals for the

comparison of expected output and the actual output.

3.2.6 Functional Coverage

This class includes the list different coverage scenarios, which

checks for the how much part of the design is covered during

verification. AXI_Master_Transaction and

AXI_Slave_Transaction classes will invoke this functional

coverage.

3.2.7 AXI_Master

This is the main block of master part, it includes the two sub-

blocks Write/read/get data and AXI master BFM.

Write/read/get data: This sub-block includes the objects of

classes‟ sequencer, driver, and monitor. Sequencer picks the

assigned sequence and drops it into the driver. It drives these

signals according to the protocol. Monitor monitors whether

signals are changing according to protocol or not

AXI master BFM: This is the class which includes the

functions related to the buses. BFM stands for Bus Function

Modules. Finally the signals driven from the driver are passed

to the DUV.

AXI_Slave has the functionality similar to AXI_Master.

3.2.8 AXI_Assertions

It includes the list of assertions which are written according to

the signal description. These are written using assert

statements. These assertions are applied to the signals that are

driving from the driver before applying to the DUV.

3.3 System Verilog

It is the Hardware Verification Language (HVL). This

language is mainly used for the verification purpose. Initially,

test bench (TB) is written in Verilog language using tasks and

functions [11]. But it was a very lengthy process. It overcomes

this lengthy process. System Verilog is the updated version of

Verilog, it also supports the features like OOPs concept,

Randomization and constrained randomization, etc., by the

help of these features we can easily generate all the possible

combinations of inputs, and thereby we can successively

verify the Design.

4. CONCLUSIONS

AMBA AXI4 is a plug and play IP protocol. It is released by

ARM, defines both bus specification and a technology

independent methodology for designing, implementing and

testing customized high-integration embedded interfaces. The

data is to be read or written to the slave is assumed to be given

by the master and is read or written to a particular address

location of slave. In this paper, an effective verification

environment can simulate most cases of the AXI signal, check

all the transmitted data automatically and complete coverage

analysis during the simulation. So the environment can

improve the coverage and reduce the time spending in the

verification.

FUTURE SCOPE

The AMBA AXI has limitations with reference to the burst

and beats information to be transferred. The burst data must

not cross the 4k boundary. Bursts longer than sixteen beats are

only supported for the INCR burst type. The WRAP and

FIXED burst types remain constrained to a maximum burst

length of 16 beats. These are the measures of AMBA AXI

system which need to be overcome.

ACKNOWLEDGEMENTS

I express my sincere gratitude to Dr. Udaykumar G. Khadke,

Special Officer, Department of PG Studies, VTU, Gulbarga, I

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 343

also thanks to Ms. Laxmi C for continuous guidance and other

Professors of Department of VLSI Design and Embedded

Systems, VTU, Gulbarga for extending their help & support in

giving technical ideas about the paper without which I would

not come up with this paper, I also thanks to all teaching, non

teaching staff of Department of PG Studies, VTU, Gulbarga.

REFERENCES

[1]. Ms. Anusha Ranga, Mr. L. Hari Venkatesh,

Mr.Venkanna, “Design and Implementation of AMBA-AXI

Protocol using VHDL for SoC Integration,” in International

Journal of Engineering Research and Applications, Vol. 2,

Issue4, July-August 2012, pp.1102-1106.

[2]. Ref Shaila S Math, Manjula R B “Survey of system on

chip buses based on industry standards,” Conference on

Evolutionary Trends in Information Technology(CETIT),

Belgaum, Karnataka, India, pp. 52, May 2011.

[3]. AMBA AXI Protocol Version: 2.0 Specification, ARM

Ltd, pp. 1-1.

[4]. ARM, AMBA AXI protocol specifications, Available at,

http://www.arm.com, 2003.

[5]. Silicore Corporation, Wishbone system-on-chip (soc)

interconnection Architecture for portable IP cores.

[6]. IBM, Core connect bus architecture. IBM

Microelectronics[Online].Available:

http://www.ibm.com/chips/products/coreconnect, 2000.

[7]. M SivaPrasad Reddy, B. Babu Rajesh, Tvs Gowtham

Prasad, “A Synthesizable Design of AMBA-AXI Protocol for

SoC Integration,” in International Journal of Engineering

Inventions Volume 1, Issue 3 (September2012) PP: 19-26.

[8]. V.N.M.Brahmanandam K, Choragudi Monohar, “Design

of Burst Based Transactions in AMBA-AXI Protocol for SoC

Integration,” International Journal of Scientific & Engineering

Integration International Journal of Scientific & Engineering

Research Volume 3, Issue 7, July-2012.

[9]. L. Tao, X. Tong, Z. Yang, L. Huawei, and L.

Xiaowei,”Bug analysis and corresponding error models in real

designs”, in IEEE International High Level Design Validation

and Test Workshop,2007,pp. 59-64.

[10]. Samir Palnitkar, Verilog HDL: A Guide to Digital

Design and synthesis, 2nd ed, Hall PTR Pub, 2003.

[11]. C. Spear,” A Guide to Learning the Testbench Language

Features”,in System Verilog for verification, 2nd ed., Springer

Publishing Company, Incorporated,2008,pp. 11-18.

