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Abstract 
This is about the mathematical model for blood flow through stenosed inclined tubes with periodic body acceleration and magnetic 

field and its application to cardiovascular diseases in biomedical engineering. It is observed that the velocity and volumetric flow rate 

decreases with increase in Hartmann number and for a particular value of phase angle, the value of shear stress increases with 

increase in Hartmann number .All these are studied in inclined tubes. 
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1. INTRODUCTION 

Pulsatile flow of blood with periodic body acceleration is 

studied by Chaturani. P and Palanisamy. V. [1}.Here pulsatile 

flow of blood through a rigid tube has been studied under the 

influence of body acceleration. Sud.V.K. and  Sekhon 

.G.S.,[2] studied  Arterial flow under periodic body 

acceleration. The study deals with the effect of externally 

imposed body accelarations on blood flow in arteries. Rathod 

and Gopichand[3]  studied Pulsatile flow of blood through a 

stenosed tube under periodic body acceleration with magnetic 

field. Rathod et al [4] studied Pulsatile flow of blood under the 

periodic body acceleration with magnetic field.    ElShahawey 

et al [5] studied MHD flow of an elastic-viscous fluid under 

periodic body acceleration. El-Shahaweyet al [6]studied 

Pulsatile flow of blood through a porous medium under 

periodic body acceleration .Coklet.G.R.[7] studied The 

Rheology of Human blood. Vardanyan.V.A[8]studied the 

Effect of magnetic field on blood flow .Bhuvan.B.C.and 

Hazarika.G.C.[9]studied the Effect of magnetic field on 

Pulsatile flow of blood in a porous channel. Chaturani.P.and 

Biswas[10] studied A Comparative study of two layered blood 

flow models with different boundary conditions.Berger.S.A.et 

al [11] studied Flows in stenotic  vessels. Young.d.F[12]  

studied the Fluid mechanics of arterial stenosis. K.Das and 

G.C.Saha[13] studied an Arterial MHD Pulsatile flow of blood 

under the periodic body acceleration. D.C.Sanyal et al [14] 

were studied the Effect of magnetic field on pulsatile blood 

flow through an inclined circular tube with periodic body 

acceleration. Further the Flow of Casson fluid through an 

inclined tube of non-uniform cross section with multiple 

stenoseshas been studied by Pelagia research library under 

advances in applied science[15].Gaurav Mishra et al [16] an 

Oscillatory blood flow through porous medium in a stenosed 

artery . 

In this paper, using finite Hankel and Laplace transforms, 

analytical expressions for velocity profile, volumetric flow 

rate and wall shear stress have been obtained and their natures 

are portrayed graphically for different parameters such as 

Hartmann number, phase angle, time etc. in an inclined tube 

under stenoses. 

 

2. MATHEMATICAL FORMULATION 

Let us consider the axially symmetric and fully developed 

pulsatile flow of blood through a stenosed porous circular 

artery with body acceleration under the influence of uniform 

transverse magnetic field. Blood is assumed to be Newtonian 

and incompressible fluid. Also for mathematical model, we 

take the artery to be a long cylindrical tube with the axis along 

z-axis. The pressure gradient and body acceleration are 

respectively given by  

 

0 1 cos( )P

P
A A t

z



  
                                               (1) 

 

0 cos( )bG a t  
                                                       (2) 

 

where 0A
and 1A

are pressure gradient of steady flow and 

amplitude of oscillatory part respectively,     0a
is the 

amplitude of body acceleration, 
2P pf 

, 
2b bf 
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with pf
is the pulse frequency and  bf  is body acceleration 

frequency, 


is the phase angle of body acceleration G with 

respect to pressure gradient and t is time. 

 

The governing equation of motion for flow in cylindrical polar 

coordinates is given by 

 

2

0 sin
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t z k
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                              (3) 

 

where u is the axial velocity of blood; P, blood pressure; 

P

z



 ,pressure gradient; 


, density of blood;      


,the 

viscosity of blood; k ,the permeability of the isotropic porous 

medium; 0B
,the external magnetic field along the radial 

direction and  is the conductivity of blood. 

 

The geometry of stenosis is shown in figure-1. 
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Where 
( )R z

is the radius of the stenosed artery, a is the 

radius of artery, 04z
is the length of stenosis and 2 is the 

maximum protuberance of the stenotic  form of the artery 

wall. 
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Where 
( )R z

depends on . 

 

The equation (3) becomes 
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Where 
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We assumed that t<0  only the pumping  action  of  the  heart 

is  present and at t=0 , the flow in the artery corresponds to the 

instantaneous pressure gradient i.e., 

 

 

 

 

 

As a result, the flow velocity at t=0 is given by 
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Where 0I
 is modified Bessel function of first kind of order 

zero 

 

The initial and boundary conditions to the problem are 
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3. SOLUTIONS 

Applying Laplace transform to equation (4) and first boundary 

condition of (6), We get 
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Where 

 

0

( , ) ( , ) ( 0)stu s e u t dt s 


  

 
 

Then applying the finite Hankel transform to equation (7),  We 

obtain 
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Where 
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and  

n are zeros of 0J
,Bessel function of first kind and 



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The Laplace and Hankel inversions of equation (8)give the 

final solution for blood velocity as 
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which can be written in the form 
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The analytical expression of u consists of four parts. The first 

and second parts correspond to steady and oscillatory parts of 

pressure gradient, the third term indicates body acceleration 

and the last term is the transient term .As  t  , the 

transient term approaches to zero. Then from equation (10),we 

get 
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The volumetric flow rate Q is given by 
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The fluid acceleration F is given by 
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The expression for the wall shear stress w can be obtained 

from 
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The expression for velocity profile computed in equation 

(10)has been depicted in figures2(a)to 5(c) by plotting r/R 

versus u in presence/absence of Hartmann number(M),for 

different values of phase angle     (


)and time t. It is observed 

that velocity decreases with increasing Hartmann number (M). 

For fixed value of 


,it is observed that increase in M 

decreases the maximum value of flow rate Q and the 

oscillatory nature of the curves with time if different for 

different values of M[Figure(6)]. 
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In figure (7), the flow rate Q decreases with increase in 

Hartmann number(M)at the particular time for different values 

of phase angle. 

 

For fixed value of


, it is found from figure(8) that the 

maximum value of the wall shear stress decreases with 

increase in M whereas in figure(9),it is observed that for fixed 

value of t, the maximum value of w increases with increase 

in M. 
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