
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 53

PERFORMANCE ANALYSIS OF SOBEL EDGE FILTER ON

HETEROGENEOUS SYSTEM USING OPENCL

Aruna Dore
1
, Sunitha Lasrado

2

1
4

th
Sem M.Tech, VLSI Design and Embedded System, NMAMIT, Nitte, Karnataka, India

2
Assistant Professor, Electronics and Communication, NMAMIT, Nitte, Karnataka, India

Abstract
The fundamental task required for any image or Video processing applications like video surveillance, medical imaging is Edge

detection. Any of the filters available can be used to detect the edges. In this paper Sobel Edge filter is used for comparing the

performance analysis on CPUs and GPUs and from this study it is found that the performance analysis on GPUs is much higher as

compared to CPUs. Also it is seen that parallel execution time is much less as compared to sequential execution for the heterogeneous

systems.

Keywords: OpenCL, GPU, Convolution Filter

--***--

1. INTRODUCTION

OpenCL is a parallel framework for heterogeneous

computations. It is a standard which is royalty free which is

platform independent and is used to work on any kind of

computational device. It is a programming language that

allows the programmer to write one version of the code that

can be executed virtually on any device that has OpenCL

drivers .OpenCL consists of an API for coordinating parallel

computations in heterogeneous computational environment

and a cross–platform programming language based on C99[9].

CUDA (Compute Unified Device Architecture) [8] is a

popular development tool for scientific GPU computing

provided by the NVIDIA manufacturer for its GPU products.

OpenCL programming model [9], supports cross-platform,

parallel programming of heterogeneous processing systems

while CUDA is not designed for heterogeneous systems.

CUDA is a parallel computing framework designed only for

NVIDIA‟s GPUs [3], and OpenCL is a standard designed for

diverse platforms including CUDA-enabled GPUs, some ATI-

GPUs, multi-core CPUs from Intel and AMD, and other

processors such as the Cell Broadband Engine. Sobel Edge

detection using CUDA gives the performance analysis of

different sized images. In this paper OpenCL is used to detect

edges for images of different sizes and we see that the

performance of a GPU is greater than the performance got

through CPU for which the explanation will be given in the

next section.

2. OPENCL STANDARD

2.1 OpenCL Architecture

Open Computing Language is a framework for writing

programs that execute across heterogeneous platform

consisting of Central Processing Units (CPUs), Graphics

Processing Units (GPUs), Digital Signal Processor (DSPs),

Field Programmable Gate arrays and other computing devices.

The OpenCL architecture consists of following programming

models:

 Platform Model

 Execution Model

 Memory Model

 Programming Model

2.1.1 Platform Model

OpenCL platform model consists of host and „n‟ number of

compute devices. The compute device consists of compute

units which in turn consist of processing elements. This can be

viewed as in Figure1.These processing elements execute code

as Single Instruction Multiple Data (SIMD) or Single Program

Multiple Data (SPMD).

Fig -1: OpenCL Platform Model

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 54

2.1.2 Execution Model

The OpenCL application is split into two parts kernel and

compute device. The part that runs on the host is named host

program and the part that runs on the compute devices is

called a kernel. To facilitate parallel execution an index space

is created when the kernel is submitted to the device for

computation. An instance of the kernel is called work-item

.The work-items are organized in an N-Dimensional Range

(NDRange)[7] where N can be 1, 2, or 3. Work-items can be

grouped into work-group shown in Figure.2. The host program

defines the device context which includes program objects,

memory objects and kernel function. The interaction between

host and OpenCL device is controlled by the host program

using command queues. These commands can be memory

commands which control all memory transfers, kernel

execution commands which submit the kernel code for

execution on the devices and synchronization commands

which control the order of command execution.

Fig -2: NDRange Index Space

2.1.3 Memory Model

The memory model of OpenCL includes Private memory,

Local memory, Constant memory, and the Global memory.

Host processor has host memory this memory is on CPU and

accessible by the CPU. Compute device has global memory as

well as constant memory. The compute device used in this

work is GPU. The GPU architecture is discussed in next

section.

Fig -3: Memory Model of OpenCL [1]

Global Memory: In this region all the work-item and work-

group has both read and write access on both the compute

device and the host.

Constant Memory: This is Read only-Global memory

accessible to all work-items.

Local Memory: Each work-group has Local memory.

Memory is shared within the work-group, i.e. work-items

within the same work-group can access this memory region

Private Memory: Memory visible to only work-item.

2.1.4 Programming Model

Under the OpenCL [9] programming model, computation can

be done in data parallel, task parallel, or a hybrid of these two

models.

3. GRAPHIC PROCESSOR AND CENTRAL

PROCESSING UNIT

Modern GPUs are highly optimized and highly parallel

computational units can outperform the traditional CPU both

in terms of arithmetic operations and memory bandwidth.GPU

uses hundreds [5] of simple cores in parallel to enhance

performance. The performance of the CPU could hardly be

increased anymore by increasing the clock frequency so they

developed a CPU into which they installed several cores in

order to increase performance. The comparison of the number

of cores on CPU and GPU is shown in Figure 4.

CPU Multiple cores

GPU (hundreds of cores)

Fig-4: Comparison of the number of cores on a CPU and a

GPU

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 55

3.1 Graphics Processor Architecture

GPUs comprise of set of parallel multi processors which are

called as Streaming multi processors(SM). Each SM contains

an instruction cache, an instruction queue, a warp-scheduler,

registers, 32 CUDA cores and special-function units (SFUs) as

shown in Figure.5. Fermi contains up to 448 general purpose

arithmetic units known as Streaming Processors (SP) .64

Special Function Units (SFU) for computing special

transcendental and algebraic functions not provided by the

SPs. Groups of 32 SPs, 16 LDSTs, 4 SFUs, and 4 TEXs

compose a Streaming Multiprocessor (SM). Each CUDA

cores consists of single Arithmetic Logic Unit (ALU) and

Floating Point Unit (FPU).

Fig-5: Each Fermi SM includes 32 cores, 16 load/store units,

four special-function units, a 32K-word register file, 64K of

configurable RAM, and thread control logic. Each core has

both floating-point and integer execution units. (Source:

NVIDIA)

3. IMAGE CONVOLUTION

Edge detection is a common image processing technique used

in feature detection and extraction. Applying edge detection

on an image can significantly reduce the amount of data

needed to be processed at a later phase while maintaining the

important structure of the image. The idea is to remove

everything from the image except the pixels that are part of an

edge. A simple edge detection algorithm is to apply the Sobel

edge detection algorithm. It involves convolving the image

using a filter.

Sobel operator consists of a pair of 3×3 convolution kernels as

shown in Figure 6. One kernel is simply the other rotated by

90°.

Fig-6: Masks used by Sobel Operator [4]

3.1 Mathematical Representation of Convolution

Convolution is a simple mathematical operation which is used

by many common image processing operators. The

convolution theorem specifies that the applying convolution is

the same as a per-frequency multiplication in the frequency

domain i.e. if the basis for both the convolution kernel and the

image were to be changed to one that consists of simple sine

and cosine functions by applying a discrete Fourier transform

then we can take each of these components, multiply them and

get the same result. This means that Fourier transform of the

convolution kernel can be taken and the dampened frequencies

can be seen (those having an amplitude<1), strengthen (>1) or

leave unchanged (=1).A maximum amplitude value of one

indicates that each of the different frequencies are

independently attenuated, i.e. the frequency components in an

image can be filtered out. The convolution of 2 functions f (t)

and g (t) is denoted by (f * g) (t) .Convolution theorem gives

the inverse Laplace transform of a product of two transformed

functions [2]:

L-1{F(s) G(s)} = (f * g) (t) (1)

Let f (t) and g (t) be two functions of t. The convolution of f

(t) and g (t) is also a function of t, denoted by (f * g) (t).And is

defined by the relation

However, if f and g are both causal functions then f (t) and g

(t) are written as f (t) u (t) and g (t) u (t) respectively, so that

Because of the properties of the step functions (u (t – x) = 0 if

x>t and u(x) = 0 if x<0).

Image convolution can be efficiently implemented on

massively parallel hardware, since the same operator gets

executed independently for each image pixel. Figure7 shows

the convolution using a small 3 x 3 kernel.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 56

 A convolution kernel works by iterating over each pixel in the

input image. For each source pixel, the filter is centred over

the pixel and the values of the filter multiply the pixel values

that they overlay. A sum of the products is then taken to

produce a new pixel value.

Fig- 7: Convolution using a 3 x 3 kernel

Steps of Sobel Edge detection

 Create Image buffer and Objects

 Write the Input Data

 Create Sampler Object

 Compile and Execute the Kernel

 Read the Result

4. EXPERIMENTAL RESULTS

The main objective is to develop the OpenCL application that

runs on any GPUs like AMD, Intel, and NVIDIA etc with less

computation time and implementations of OpenCL are

available for the operating systems like Mac OS X 10.6 and

higher, Microsoft Windows and Linux.

4.1 Experimental Setup

For this experimental set up Intel i7 processor and NVIDIA

GTX 470 devices used. Detailed Technical specification is

given in the table 1. The code is compiled using OpenCL 1.1

NVIDIA CUDA version

Table -1: Device Technical Specification

4.2 Results

The size of image is varied from 512 pixels to 2048 pixels.

When image size is increased the serial program execution

time considerably increases. Execution times in serial and

parallel versions over CPU and GPU devices are presented in

Table 2, 3 respectively and Graphs are plotted. Speed up for

sobel filter is given in the Table 4.

Table -2: Execution time of serial and parallel over CPU

Table -3: Execution time of serial and parallel over GPU

Table -4: Speed up for Sobel Filter with CPU and GPU

Chart -1: CPU Speed up for Serial Vs Parallel

Specifications GPU CPU

Vendor

NVIDIA

GeForce GTX

470

INTEL

Core i7

No. Of cores 448 8

Clock(MHz) 1215 3400

Global

Memory(MB)
1280 2047

Local Memory(KB) 48 32

Max.Work-Item size
1024 x 1024 x

64

1024 x 1024 x

1024

Max.Work-Group

size
1024 1024

Input Image T serial

(sequential)

(s)

TCPU

(parallel)

(s)

Speedup

T serial/

TCPU

512x512 3.539 0.102 34.696

1024x1024 5.568 0.376 14.808

2048x2048 17.434 2.788 6.2532

Input

Image

T serial

(sequential)

(s)

TGPU

(parallel)

(ms)

Speedup

Tserial/TGPU

512x512 3.539 0.0021 1685.238

1024x1024 5.568 0.011 506.181

2048x2048 17.434 0.0843 206.809

Input Image CPU

Processing

(ms)

GPU

Processing

(ms)

Speedup

512x512 102.001 2.1 48.5719

1024x1024 376.012 11.01 34.1518

2048x2048 2788.04 84.023 33.1818

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 57

Chart -2: GPU Speed up for Serial Vs Parallel

Speed up for Sobel with CPU and GPU

0

10

20

30

40

50

60

512x512 1024x1024 2592x3240

Input Image

Pr
o

ce
ss

in
g

Ti
m

e
 (

m
s)

Speed UP

Chart -3: Speed up for Sobel with CPU and GPU

Efficiency = Speedup/#.of cores

Chart -4: Efficiency of CPU Vs GPU for Sobel filter

5. CONCLUSIONS

In this work parallel programming of OpenCL studied.

OpenCL is tool used for programming on GPU regardless of

vendors. OpenCL provides an interface for the interaction of

hosts with accelerator devices like GPUs, DSPs and FPGAs.

Graphics Processing Units are highly useful in parallel

computing. In this paper Sobel edge detection is implemented

on GPU using OpenCL in C and compared with sequential

execution and efficiency of CPU and GPU is discussed. As the

input size is increased the OpenCL gives good performance.

The technologies advances in FPGA devices offering

hundreds GFLOPs (Giga Flip Flop per Seconds) with

maximum power efficiency has made way for parallel

processing community towards them. As a future expansion

the use of FPGAs using OpenCL as programming language

will be considered for comparison of speed ups with the

CPUs, GPUs, and FPGAs

REFERENCES

[1]. Aaftab Munshi, Bendict R. Gaster, Timothy G. Mattson,

“OpenCL Programming Guide,”Published by Pearson

Inc.,2012

[2]. Anirud Pande,Rohit Chandna,”Matrix Convolution using

Parallel Programming,” International Journal of Science and

Reasearch (IJSR),India Volume 2 Issue 7, July 2013

[3]. Jia Tse, “Image Processing with CUDA,” Master‟s Thesis,

University Of Nevada, Las Vegas, August2012

[4]. J inu Prabhakar.K.P , Anitha Mary.X,” FPGA Based

Lane Deviation System Using System Generator” in

International Journal of Advanced Research in Computer

Science and Software Engineering ,Volume 3, Issue 2,

February 2013

[5]. K. Fatahalian and M. Houston, “A closer look at GPUs,”

Communications of the ACM, vol.51, No. 10, October 2008.

[6]. Krishnahari Thouti and S.R.Sathe, “A Methodology for

translating C-Programs to OpenCL,”, vol. 82, International

Journal of Computer Applications(0975- 8887), 2013, pp. 11-

16.

[7]. Matthew Scarpino,”OpenCL in Action,” by Manning

Publications Co., 2012

[8]. Nvidia, OpenCL Programming Guide Version 2.3.pdf

[9]. OpenCL, “The open standard for parallel programming of

heterogeneous systems,” [Online]. Available:

http://www.khronos.org/opencl.

[10]. Tadeusz Puzniakowski, “Performance of OpenCL” The

University of Gdansk, 2012

http://www.khronos.org/opencl

