
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 01 | NC-WiCOMET-2014 | Mar-2014, Available @ http://www.ijret.org 103

FPGA IMPLEMENTATION OF A FUNCTIONAL MICROCONTROLLER

Pranoy T.M
1
, Nitya Mary Kurian

2
, Rizwana Parveen K.A

3
, Radhika V Nambiar

4
, Neethu George

5

George M Jacob
6

1, 2, 3, 4
B.Tech Student,

5
Assistant Professor,

6
Lab Instructor, Electronics & Communication Engineering, TocH Institute of

Science and Technology, Kerala, India

Abstract
In any control and controller system applications, microcontroller is an important module, which provides the control, timing and

status signals. A microprocessor is usually defined as “a single chip that contains control logic and data processing logic, so that it

can execute instructions listed in a program to operate on some data”. Microcontrollers are nothing but microprocessors with on-

chip memory. This paper primarily deals with the implementation of an 8 bit microcontroller to perform arithmetic and logical

operations. The modules are programmed using Very High Speed IC Hardware Description Language (VHDL). Using top-down

approach, the elements of the microcontroller are identified as basic registers, instruction register, program counter, ALU, ROM,

Control and timing Unit. All these modules are connected together to form a top module which is controlled by a Finite State Machine

(FSM). The Finite State Machine enters each of the predefined states based on the inputs. FSM implementation also aids in changing

the functionalities of the system without completely redesigning the system. Finally, in the top level module, these blocks are

connected to form a functional microcontroller. In this paper, we have simulated and synthesized the various parameters of

microcontroller by using VHDL on Xilinx ISE 8.2i and SPARTAN 3 FPGA board.

Keywords: FPGA, Microcontroller, Microprocessor and VHDL

--***--

1. INTRODUCTION

A microcontroller is a small and low-cost computer built for

the purpose of dealing with specific tasks, such as displaying

information in a microwave LED or receiving information

from a television‟s remote control. Microcontrollers are

mainly used in products that require a degree of control to be

exerted by the user.

Whether using ASIC, FPGA or CPLD based realizations, it is

essential to incorporate the microcontroller module, as an

integral part of the system. Functional microcontroller has

been developed using VHDL coding using structural design of

logic blocks which generates control and timing signals used

for the data processing operation.

Present day VLSI technology has lead to the design and

development of millions of gates on a chip. Hardware

designers create several VLSI modules for their research and

development purposes. It is often important to re-use these

modules to reduce product development time, thereby

minimizing the time to market. Therefore, it is important to

design hardware in a modular fashion, so that these modules

can be included in the development of a complex system. The

design and development of such a modular design

microcontroller helps other designers to incorporate this

module with minimal or no modifications to the hardware

module
 [1]

.

2. LITERATURE SURVEY

Although many innovative methodologies have been devised

in the past, to handle more complex control problems and to

achieve better performances, the great majority are still

controlled by means of simple microcontrollers. When

compared to von Neumann processor architectures, the

Harvard architecture improves the bus bandwidth as in von

Neumann architectures both program and data memory are

being accessed through a shared bus.

Majority of previous works done have used VHDL to describe

all the modules in the design which is a very useful tool with

its degree of concurrency to cope with the parallelism of

digital hardware. The VHDL software reduces the complexity

and also provides a graphic presentation of the system. The

key advantage of VHDL when used for systems design is that

it allows the behaviour of the required system to be described

(modelled) and verified (simulated) before synthesis tools

translate the design into real hardware (gates and wires). This

software not only compiles the given VHDL code but also

produces waveform results. [2]

In designing a CPU, first its instruction set needs to be

defined, and how the instructions are encoded and executed.

Also the number of instructions, what the instructions are,

what operation code (opcode) need to be assigned to each of

the instructions, how many bits need to be used to encode an

instruction etc have to be addressed. Once the instruction set is

http://www.engineersgarage.com/content/led

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 01 | NC-WiCOMET-2014 | Mar-2014, Available @ http://www.ijret.org 104

decided upon, designing a datapath that can execute all the

instructions in the instruction set is done. In this step, a custom

datapath is created, so what the functional units are, how many

registers need to be used, whether single register file or

separate registers, how are the different units connected

together etc are decided. [6]

The microcontroller consists of control and data processing

parts. The control part is composed of program counter,

program memory and instruction register. The Arithmetical-

Logic unit (ALU) is the core of data processing part. Further

parts are input multiplexer, Accumulator register and register

file. [5]

The system development starts with top-down planning

approach and the blocks are designed using bottom-up

implementation. The programs are written and simulated using

Electronic Data Automation (EDA) tool like ModelSim.

[2]The main advantage of using a state machine in embedded

design consists in its flexibility to add, delete or change the

flow of the program without impacting the overall system

code structure.

Increasing performance and gate capacity of recent FPGA

devices permits complex logic systems to be implemented on

a single programmable device. Such a growing complexity

demands design approaches, which can cope with designs

containing hundreds of thousands of logic gates, memories,

high-speed interfaces, and other high-performance

components.[4]

3. SYSTEM ARCHITECTURE

When compared to Von Neumann processor architectures, the

Harvard architecture improves the bus bandwidth as in Von

Neumann architectures both program and data memory is

being accessed through a shared bus. Thus the architecture

implemented is Harvard architecture.

3.1 Block Diagram

The RISC processor core provides an 8-bit ALU. The ALU

receives its input from two eight bit registers namely the

Accumulator (Register A) and Register B. If there is only one

operand then that operand will be the Accumulator. The ALU

supports simple arithmetic operations like addition,

subtraction, increment and decrement; boolean logic

operations like AND and OR; data transfer instructions and

branching instructions.

Fig -1: General block Diagram

4. MODULE DEVELOPMENT

4.1 Arithmetic Logic Unit

Fig -2: ALU

It is a multi operational combinational logic circuit which

performs arithmetic and logical operations like ANDing,

ORing, ADDITION, SUBTRACTION, etc. The word length

of ALU depends upon internal data bus. It is 8 bit and is

always controlled by timing and control circuits.

The inputs to the ALU are „x‟ and „y‟, which are 8 bit data and

a 4 bit control input „a‟. Apart from these there are clock,

alu_reset and alu_enable inputs. ALU is positive edge

triggered. „z‟ is the 8 bit output from ALU. reg_a_move and

reg_b_move are two outputs used for move instructions and

clock

alu_enable

x y

a

z reg_a_move reg_b_move

8 8 8

8 8

4

alu_reset
ALU

DATA

MEMORY

ALU

Reg

A

Reg

B

INSTRUCTIO

N REGISTER

PROGRAM

MEMORY

PROGRAM

COUNTER

I/O

INTERFA

CE

TIMING AND CONTROL UNIT

MU

X

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 01 | NC-WiCOMET-2014 | Mar-2014, Available @ http://www.ijret.org 105

also for storing data to accumulator after an instruction is

executed.

4.2 Accumulator

Fig -3: Accumulator

Accumulator is an 8 bit register. It is positive edge triggered.

Inputs to the register are control, data_in and reg_enable.

Control input is used to decide whether data is to be read from

or written to the register. The output of register A „data out‟ is

given as input to the ALU. ‟a_zero_status‟ is a flag that

reflects the status of accumulator. If content of the

accumulator is zero, the flag is set.

4.3 Program Counter

Fig -4: Program Counter

Program counter is a special purpose register which stores the

address of the next instruction to be executed. Microcontroller

increments the program counter whenever an instruction is

being executed, so that the program counter points to the

memory address of the next instruction to be executed. The

inputs to the program counter are input(4 bit), opcode(4 bit),

pc_enable, pc_reset and a_zero_status. Output of program

counter is given as the 4 bit address to ROM.

4.4 Program Memory

Fig -5: Program ROM

The program is stored inside a 16*8 ROM. It is positive edge

triggered. The inputs to the ROM are addr and rom_enable.

addr is a 4 bit address. Opcode is stored in the memory

location given by this addr. When rom_enable is high, this

opcode will be available at the output pin dout.

4.5 Instruction Register

Fig -6: Instruction Register

Instruction register is an 8-bit register just like every other

register of microcontroller. The instruction may be anything

like adding two data, moving data etc. When such an

instruction is fetched from memory, it is directed to instruction

register. So the instruction registers are specifically to store

the instructions that are fetched from memory.

4.6 Timing and Control Unit

Timing and control unit is a very important unit as it

synchronizes the registers and flow of data through various

registers and other units. This unit consists of an oscillator and

controller sequencer which sends control signals needed for

internal and external control of data and other units.

4.7 I/O Interface

An I/O interface is required whenever the I/O device is driven

by the processor. The interface must have necessary logic to

interpret the device address generated by the processor. If

different data formats are being exchanged, the interface must

be able to convert serial data to parallel form and vice-versa.

clock
INSTRUCTION

REGISTER
ir_enable

8

data_in

8

data_out

PROGRAM
ROM

addr

clock rom_enable

dout

 4

8

input opcode

clock

PROGRAM

COUNTER

pc_reset

a_zero_status

output

pc_enable

4

4 4

clock ACCUMULATOR

a_zero_status

8

 8

data_in
control

data_out

reg_enable

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 01 | NC-WiCOMET-2014 | Mar-2014, Available @ http://www.ijret.org 106

5. STATE DIAGRAM

The START state serves as the initial reset state. Program

counter incrementing is performed in this state. All

instructions are made to go back to the START state.

From the START state, the control unit goes to the FETCH

state unconditionally. In the FETCH state, the program ROM

is enabled and the opcode is fetched.

From the FETCH state, the control unit goes to the DECODE

state unconditionally. In this state IR is enabled and the output

of program ROM is stored in IR. The DECODE state tests the

four most significant bits of the IR, IR7-4, and goes to the

corresponding state as encoded by the four bit opcode for

executing the instruction.

The ADD, SUB, OR & AND instructions respectively adds,

subtracts, ORs and ANDs the content of register A with the

content in register B, and stores the result back into

Accumulator.

There are direct and register MOV operations. In direct

addressing, the content of the specified address is moved to

the accumulator. In register addressing, the contents of the

source register is moved to the destination register (either A to

B or vice versa).

The IN instruction inputs a value and stores it into A. The IN

state waits for the Enter key signal before looping back to the

START state. In doing so, several values can be read in

correctly by having multiple input statements in the program.

Notice that after the Enter signal is asserted, there is a zero

state that waits for the Enter signal to be de-asserted, i.e. for

the Enter key to be released.

The OUT instruction copies the content of the accumulator to

the output port.

The JMP instruction loads the PC with the specified address of

the IR. The JZ instruction loads the PC with the specified

address if A is zero. Loading the PC with a new address

simply causes the CPU to jump to this new memory location.

The JNZ (Jump Not Zero) instruction tests to see if the value

in A is equal to 0 or not. If A is equal to 0, then nothing is

done. If A is not equal to 0, then the last four bits of the

instruction, designated as addr in the encoding, is loaded into

the PC. The four bits, addr, represent a memory address.

When this value is loaded into the PC, we are essentially

performing a jump to this new memory address, since the

value stored in the PC is the location for the next fetch

operation.

NOP instruction performs no operation.

The INC and DEC instructions increment and decrement the

content of A by 1 respectively, and store the result back into

Accumulator.

Once the FSM enters the HALT state, it unconditionally loops

back to the HALT state, giving the impression that the CPU

has halted.

Table -1: Instructions and Opcodes

Instruction Opcode

ADD A,B 0000xxxx

SUB A,B 0001xxxx

MOV A,B 0010xxxx

AND A,B 0011xxxx

OR A,B 0100xxxx

MOV B,A 0101xxxx

IN A 0110xxxx

OUT A 0111xxxx

JMP addr 1000 addr

JNZ addr 1001 addr

JZ addr 1010 addr

NOP 1011xxxx

INC A 1100xxxx

DEC A 1101xxxx

MOV A, #addr 1110 addr

HALT 1111xxxx

6. SIMULATION RESULTS

6.1 Simulation Result of Addition in Datapath

Fig -7: Simulation result of addition in Datapath

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 01 | NC-WiCOMET-2014 | Mar-2014, Available @ http://www.ijret.org 107

ADD A, B

Figure shows the simulation of ADD instruction in the

datapath. When an add instruction is encountered in the

program the datapath behaves as shown above.

Here two eight bit numbers at alu input pins reg_a_data_in

(00001110) and reg_b_data_in (00000001) are added together

and the result (00001111) appears in the output pin a_move.

6.2 Simulation Result for Addition

Fig -8: Simulation result for addition

IN A

MOV B,A

MOV A, #1000

ADD A,B

HALT

Figure shows the simulation of the program given above,

where two eight bit numbers 00000010(external input) and

00001000(stored in data memory at address #1000) are added

to get the output 00001010 at the output pin.

6.3 Simulation Result for Subtraction

Fig -9: Simulation result for subtraction

IN A

MOV B,A

MOV A, #1000

SUB A,B

HALT

Figure shows the simulation of the program given above,

where two eight bit numbers 00001000(stored in data memory

at address #1000) and 00000101(external input) are subtracted

to get the output 00000011 at the output pin.

6.4 Simulation Result for Decrementing until Zero

Fig -10: Simulation result for decrementing until zero

IN A

DEC A

OUT A

JNZ 0001

HALT

Figure shows the simulation of the program given above,

where DEC instruction is followed by a JNZ instruction. Here

an external eight bit number (00000011) is decremented until

it becomes zero.

7. SYNTHESIS RESULTS

7.1 Design Summary

Table -2: Device utilization summary

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 125 1920 6%

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 01 | NC-WiCOMET-2014 | Mar-2014, Available @ http://www.ijret.org 108

Number of Slice Flip

Flops
161 3840 4%

Number of 4 input LUTs 234 3840 6%

Number of bonded IOBs 19 173 10%

Number of GCLKs 2 8 25%

7.2 RTL Schematic Diagrams

Fig -11: RTL Schematic of top module

Fig -12: Expanded RTL Schematic of top module

Fig -13: RTL Schematic of datapath

Fig -14: RTL Schematic of program path

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Special Issue: 01 | NC-WiCOMET-2014 | Mar-2014, Available @ http://www.ijret.org 109

Fig -15: RTL Schematic of control unit

8. CONCLUSIONS

In this paper, the design and the development of a basic 8-bit

microcontroller has been discussed. The developed

microcontroller module functions with simple control signals.

The developed module is functionally built in VHDL. Due to

the modular design and bottom-up implementation of this

microcontroller, the VHDL code can easily be expanded to

develop higher order microcontroller without making

extensive changes. The design was implemented by using

Xilinx Synthesis tool choosing Spartan 3 as the FPGA target

device.

REFERENCES

[1] Vivekananda Jayaram, Subbarao Wunnava ,

“Functional Microcontroller Design and

Implementation,” LACCET’2006 , Mayagüez, Puerto

Rico ,June 2006

[2] Suchita Kamble,N. N. Mhala, “VHDL

Implementation of 8-Bit ALU,” IOSR Journal of

Electronics and Communication Engineering

(IOSRJECE) ISSN : 2278-2834 Vol 1, Issue 1 (May-

June 2012)

[3] DulÍk M. Vasilko Durakov P. Fuchs,” Design of a

RISC Microcontroller Core in 48 Hours”,

1Microelectronics Systems Research Group School of

Design, Engineering & Computing, Bournemouth

University Fern Barrow, Poole, Dorset BH12 5BB

United Kingdom

[4] M. Kovac,” Asynchronous Microcontroller Simulation

Model in VHDL,” World Academy of Science,

Engineering and Technology 21 2008

[5] Enoch O. Hwang, “General-Purpose Microprocessors,”

in Digital Logic and Microprocessor Design With

VHDL of His Published Book, 1st Indian reprint ed.

Thomson Learning

BIOGRAPHIES

Pranoy T.M is presently a student of

TocH Institute of Science and Technology,

Arakkunnam, Kochi. He is pursuing his

BTech degree in Electronics and

Communication Engineering from CUSAT.

Nitya Mary Kurian is presently a student

of TocH Institute of Science and

Technology, Arakkunnam, Kochi. She is

pursuing her BTech degree in Electronics

and Communication Engineering from

CUSAT.

Rizwana Parveen K.A is presently a

student of TocH Institute of Science and

Technology, Arakkunnam, Kochi. She is

pursuing her BTech degree in Electronics

and Communication Engineering from

CUSAT.

Radhika V Nambiar is presently a student

of TocH Institute of Science and

Technology, Arakkunnam, Kochi. She is

pursuing her BTech degree in Electronics

and Communication Engineering from

CUSAT.

Neethu George is presently working as

Assistant Professor in the department of

Electronics and Communication

Engineering, TocH Institute of Science and

Technology, Arakkunnam, Kochi .She

received her MTech degree in VLSI &

Embedded Systems from CUSAT.

George M Jacob is presently working as

Lab Instructor in the department of

Electronics and Communication

Engineering, TocH Institute of Science and

Technology, Arakkunnam, Kochi. He

received his engineering diploma in Computer Science from

the Board of Technical Education.

