
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 12 | Dec-2014, Available @ http://www.ijret.org 284

A TECHNICAL INSIGHT INTO THE CONCEPTS AND

TERMINOLOGIES BEHIND OAUTH – AN OPEN STANDARD FOR

AUTHORIZATION

Lija Mohan
1
, Sudheep Elayidom M

2

1
Research Scholar, School of Engineering, Cochin University of Science & Technology, Kerala, India

2
Associate Professor, School of Engineering, Cochin University of Science & Technology, Kerala, India

Abstract
As the world wide web matures, more and more sites rely on distributed services and cloud computing for a better scalability and

efficiency to meet their enhanced needs. Some examples are: a printer printing the Flickr photos, a Facebook like social network

using your Google account to find friends, or any third-party programs utilizing APIs from multiple websites. The problem is, in

order for these external applications to access user data from other sites, they ask for your usernames and passwords. Not only

does this require exposing your secure credentials to non trustable sources ; but also provides these application unlimited access
to access your account as they wish. If they get this credentials then they have unlimited access to your account and at the worst,

they can change your passwords and lock your access as well. Often the same passwords may be used for online banking and

other secure transactions. OAuth is an Open Standard to allow users to grant a third-party access to their resources without

sharing their actual passwords. It also provides a way to grant limited access to resources with respect to scope, duration,

location etc.

Keywords: OAuth, Delegated Access, Open Standard

--***--

1. INTRODUCTION

The term OAuth [2] implies ‘Open standard to
AUTHorization’. Utlimate aim of OAuth is to provide
'secure and fine grained access' to third party resources on
behalf of the owner of the resources and this is achieved
without sharing the actual credentials.

1.1 Introducing OAuth using a Simple Real Life

Analogy

Imagine some real life scenarios.
Scenario 1: Your apartment has different keys to open
different doors including the main door and lockers. It will
be very difficult to keep these many keys safe.

Scenario 2: To make key management simple, you designed
a ‘Master Key’ such that, this single key could open each
and every rooms and lockers in your apartment. The
advantage of such a master key design is that it will make
the ‘key management’ easy. You need to keep only a single
key to open every lock.

Scenario 3: The down side of single key (scenario 2) is that
if you need to leave your key with a maid for cleaning the
apartment she will be able to access every rooms as well as
lockers. But you do not want your maid to access your
lockers. So as an alternative, you designed a new key called
‘Delegated Key’ with which your maid can open all rooms
in your apartment but not lockers. Here you can keep the
Master key for yourself and leave the delegated key to the
maid.

Scenario 3 will result in easy key management and it will

serve the security purpose as well.

1.2 Extending OAuth to Meet Real World

Applications

Consider you are applying for a job in a job-portal named

‘JOBS.com’. You need Jobs.com to access your academic

details alone from your google account. But if you share

your actual google credentials, then jobs.com will be able to

access every bit of information of you, stored in google, say

your mails, personal data etc. Here OAuth comes to rescue.

Here instead of sharing the actual credentials, you could

authenticate directly with google and give permission to

jobs.com to access a part of your stored information.

OAuth as a framework will provide a method for users to

grant third-party access to their resources without sharing

their actual credentials. It also provides a way to grant

limited access to resources in scope, duration, location, etc.

If we consider the traditional client server model, there are

only two user roles: The Server and Client. If client need to

access some server functionality, then it should provide its

credentials to authenticate itself and if the client is authentic

then the service is provided by the server. But in OAuth we

consider the extended needs of users in distributed
environment and hence apart from client and server there

come one more role i.e. Resource Owner.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 12 | Dec-2014, Available @ http://www.ijret.org 285

If Facebook needs to access your google address book to

find your friends then the server role is for Google,

Facebook comes in Client role and Resource Owner is you

yourself. i.e. a client acts on behalf of Resource Owner to

access the resources owned by the Resource Owner.

Instead of sharing the actual credentials, Resource Owner

issues a token and a shared secret to Client to temporarily

access the resources. The tokens are issued with limited

scope and duration and can be revoked at any time.

1.3 Development of OAuth

The OAuth started basically as an extension to OpenID.

Blan Cook investigated a technique to extend OpenID such

that Twitter APIs can access other resources without sharing

their actual user names and passwords. This happened in

November 2006 and later Chris Messina also joined his

team. In 2009 Twitter released a delegated access control

solution called ‘Sign-in with Twitter’ with the help of
OAuth. Then the standard was submitted to IETF and a

group was formed to develop and manage the OAuth

principles. Thus it evolved as a web authorization standard.

2. FAMILIARIZING OAUTH TERMINOLOGIES

We have already discussed the 3 roles defined for OAuth in

section 1. They are the client, server, and resource owner.

These three roles will be present in any OAuth transaction;

in some scenarios the client and resource owner can be the

same entity.

In the basic client-server authentication model, the client

uses its secret user name and password to access its
resources hosted on the server. But Server does’nt check the

authenticity of these credentials. If some other user stole the

credentials and uses it on behalf of actual client this is not

identified in existing scenario.

Fig 1 : Basic Client Server Configuration

In OAuth standard, a third actor or any other client can use

the Owner’s resources provided, the client is authorized to

use those resources. Here there is no need for the client to

provide his credentials but resource owner can share with

him a temporary credential which enables him to access the

resources.

Thus the advantages of OAuth are:

i. There is no need for resource owner to share his

actual credentials with a third party.

ii. Access can be given for a particular duration, scope,

etc.

iii. Access can be revoked easily.

Fig 2: OAuth Terminologies

If we consider a web-based application, the role of client can
be split to two entities viz. a front end application running

on user side (within web browser) and a back end program

running on client’s server. Here Resource owner interacts

with front end application where as server receives and

process requests from back end program. But according to

the OAuth principle, the scenario is much simplified as we

can consider client as a single entity.

Fig 3: Different roles in OAuth

2.1 Protected Resources

A Resource owner stores some resources on server which

can be accessed by third party users. But to access the

resources the users should be correctly authorized. Server

enforces access to resources strictly based on authorization.

Such resources are called protected resources. The protected

resources can be a document, audio files, video files, photos,
posts, services, etc. Even if OAuth can be used with any

transport protocol, it can be used for only http/https

resources.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 12 | Dec-2014, Available @ http://www.ijret.org 286

2.2 2-Legged, 3-Legged, n-Legged

Number of parties involved in OAuth implementation is

specified as ‘legs’. 3 legged OAuth means there will be 3

roles defined; the client, server and the resource owner. A 2

legged OAuth implementation means there will be only 2

roles client and server (here resource owner and client will

be same entity). Additional legs imply that more users and
re-delegated to provide access to protected resources.

2.3 Credentials and Tokens

OAuth make use of three types of credentials: client

credentials, temporary credentials, and token credentials.

The client credentials helps to authenticate the client. Client

credential helps the server to identify its clients. Based on

this credential some special privileges and services can be

granted. But the problem is that any user who gets this client

credential could try to connect to the server as and when

needed. Hence client credentials are allowed for some

special applications like desktop applications.

Token credentials are issued temporarily to users by the

Resource Owner on request. These are temporary in the

sense that the tokens will have a limited scope and duration.

Thus resource owner can grant access to his resources

without sharing the original credentials. Token credentials

are constructed such that the it contains an id which is a

random string of letter and numbers that is hard to guess and

the token should be paired with a secret key from user so

that it will prevent unauthorized misuse. Even if the owner

withdraws one token it will not affect other users.

Temperory credentials are used to identify authentication

requests. In OAuth 1.0, one half of this temperory credential

will be a symmetric shared secret which is paired between a

client and server. However, OAuth supports an RSA[4]-

based authentication method which uses an asymmetric

client secret.

3. OAUTH PROTOCOL WORKFLOW

Here we explain the concept of OAuth and its workflow

based on a real life requirement [1]:

Fig: 4 A Real Life Application

Jane went for a vacation and after her return she plans to

upload some of her photos to a social media photo sharing

website like Faji. For that she login to her Faji account with

her secret credentials like user name and password and

uploads the photos. She set its accessibility as private and

shares that album with only her friends.

If we compare this analogy to OAuth terminology, Jane

becomes the Resource Owner, Faji becomes the Server and

the photos in the album are actually the protected resources.

Fig 5: Jane uploads photos to Faji

Now Jane has made available her photos to friends online.

Now she needs her grandmother who is residing at a far of

place to see her photos. But since grandmother is less

familiar with using computers Jane decided to sent some

hardcopy of the photos to her. For that Jane preferred
Beppa- an environment friendly printing service to take the

print out of her photos.

For the above mentioned scenario, Beppa acts in Clinet role

of OAuth. It want to access the protected resources (photos)

on behalf of the Owner, Jane. For that Beppa should gain

temporary credentials from Jane.

Jane loads beppa.com on her browser and selects ‘photo

printing’ service. Then Beppa.com asks for the photo source

like Flickr, Faji, dropbox etc. Here Jane selects Faji.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 12 | Dec-2014, Available @ http://www.ijret.org 287

Fig 6: Select photo source

According to OAuth principle, Beppa supports photo import

from Flickr, Dropbox and Faji implies Beppa is a client and

it has already obtained a set of client credentials that can be

used to access photos from these servers.

When Jane clicks Continue, in the background Beppa

requests a set of temporary credentials from Faji. Actually

the temporary credentials are not resource-owner-specific;
they can be used by Beppa to gain resource owner approval

from Jane to access her private photos.

.
Fig 7: Beppa accessing Faji using Temperory Credentials.

Since Beppa has got temperory credentials to authorize with

OAuth API of Faji, when Jane clicks continue, the Faji

webpage will get loaded. But currently Beppa has not been

authorized to access Jane’s protected resources stored inside

Faji. For that Faji will ask Jane to login to her account and

ask whether she need to share her protected resources with

Beppa. If she clicks yes then Faji will allow access

permission to Beppa. Here the access can be restricted by
Jane. For e.g. She can a grant a read only access, access for

1 hour etc.

Fig 8: Jane enters username and password to Faji

Thus OAuth allows Jane to share her photos with Beppa on

behalf of Faji without revealing her secret credentials like

username or password to Beppa.

Fig 9: Jane granting privileges to Beppa

Fig 10: After gaining the access, Beppa fetches photos from

Faji

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 12 | Dec-2014, Available @ http://www.ijret.org 288

Thus Beppa exchanges wuthorized request token to get an

access token and uses this access token to access the photos

of Jane.

Fig 11: Access token obtained

Fig 12: Beppa fetches the photos using Access Token

3.1 Overall Oauth Workflow in a Single Diagram

Fig 13: Overall OAuth Workflow

Fig 13 illustrates the overall workflow taking place in an OAuth architecture. A 3-legged system is considered with Client, Server

and Resource Owner as 3 entities.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 12 | Dec-2014, Available @ http://www.ijret.org 289

4. SECURITY FRAMEWORK

4.1 Beyond Basic

‘Basic’ is the Authentication protocol used by HTTPS. But

in this protocol user name and passwords are send in an

unencrypted form and hence any one listening to the

network could capture the secrets. There is no mechanism to

identify compromised secrets. Also another problem

associated with Basic is that delegation of access control is

not possible. OAuth is designed in such a way as to rectify
all the problems associated with BASIC. OAuth defined

over HTTPS will eliminate man-in the middle[5] attack also.

Without HTTPS the security is enhanced using HMAC-

SHA1[6] and RSA-SHA1[7].

4.2 Credentials

Instead of using user name and password to gain access to

resources, OAuth uses client identifiers and access tokens to

gain access to protected resources. Delegated access to

protected resources is made possible using two set of

credentials: Client identifies itself using a client identifier

and client secret, whereas the resource owner is identified

by an access token and token secret. Access tokens are
granted and assigned by a backend application and hence

they are hidden to even the Resouce Owner.

4.3 Signature and Hash

OAuth uses digital signatures to verify the integrity of the

message being transmitted. The basic idea of using digital

signature is that, in addition to the original request, sender

will send a signature value which is calculated by applying

some mathematical operations over the requested data. At

the other end receiver will apply the same set of

mathematical operation over the requested data and check

whether it matches with the signature value received. If they

matches, then receiver could confirm that the requested data
has not been modified while transmission.

OAuth uses digital signatures instead of sending the full

credentials (specifically, passwords) with each request.

Similar to the way people sign documents to indicate their

agreement with a specific text, digital signatures allow the

recipient to verify that the content of the request hasn’t

changed in transit. To do that, the sender uses a

mathematical algorithm to calculate the signature of the

request and includes it with the request.

Usually digital signatures are implemented using hashing
algorithms. A good hashing algorithm will always be

collision resistant, one-way and strictly depends on the data

being hashed. But using the hashing technique we cannot

check whether message comes from the intended sender. To

verify that too we need to include some ‘Shared Secret’

concept to the hashing technique. For example apply

hashing algorithm after appending the shared secret with the

message or apply hashing algorithm with shared secret as

the key.

4.4 Implementing Shared Secret

According to the principles of OAuth, the shared secret

generated as a part of the credentials depends on the
signature algorithms used. For Plaintext as well as HMAC-

SHA1 the shared secret is a part of client secret and token
secret. But for RSA-SHA1 it makes use of asymmetric

shared secret. In RSA asymmetric crypto system there will
be 2 keys ; a public key and a private key. Private key will

be known to the Owner alone where as public key will be
available to server. Private key is used to sign the request

whereas public key is used to verify the message. Therefor
the public and private key pair must match for correct

verification of message. RSA crypto system is more secure
compared to others because even the server is unaware of

the private key of owner.

4.5 Timestamp and Nonce [10]

In OAuth technology, Digital signatures provide mechanism
for ensuring the data integrity while shared secret helps to

check whether the message comes from the authorized user.
Even if an attacker captures the message from network [9] it

is of no use to him since he cannot make any modification
without knowing the shared secret. But he will be able to

initiate a replay attack by continuously resending the same
message which makes the server busy and thus lead to a

denial of service attack.

To eliminate this possibility, OAuth uses the concept of
Nonces (Number Used Once) [10] apart from signatures and

shared secret. With each request the user will append a
nonce value which is a unique random value generated for

that particular request. When it reaches the server, the server
will store this nonce value. If a message with same nonce

value arrives, it is considered as a duplicate request and

hence not processed. Thus solves the possibility of replay
attack.

But as the number of requests increases server will require

more space to store all these nonce values and comparison
will also take more time. To rectify this issue, apart from

nonce value, the timestamp is also appended to the request.
Hence the nonces generated within a particular time span

can be deleted from server.

OAuth in fact generates Nonce as a combination of a
random number and timestamp.

4.6 Signature Methods

PLAINTEXT, HMAC-SHA1 and RSA-SHA1 are the three

signature methods supported by OAuth among which
PlainText method is preferred only over HTTPS connection.

HMAC uses symmetric key cryptography whereas RSA

uses asymmetric key cryptography. Both use SHA1 as the
hashing algorithm.

The signature method used should be specified in the OAuth

request itself. Then only the server can correctly verify the
request.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 12 | Dec-2014, Available @ http://www.ijret.org 290

4.7 Signature Base String

As explained in the above section, both client and server

should know each other about the signature methods used

and different parameters. Then only the request could be

processed correctly. For that the parameters passed through

the url should have a common format known to the client

and server. This formatted url is called Signature Base
String in OAuth. A sample Signature Base String generated

for different parameters are shown in figure.

Fig 14: A Sample Oauth Query Passed Through URL

5. CONCLUSION

In this article we explained an emerging ‘Open Source tool

to Authentication (OAuth)’ and we tried to explain OAuth

as simple as possible so that any beginner can directly get

familiarized with it. We initially considered some real world

examples to illustrate the need of such Delegated Access

Provisioning schemes and then explained some practical

applications where such protocols become useful. Then the

article provides some technical insight to how actually the

security is implemented in OAuth. As a conclusion we can

say that OAuth is an open protocol to allow secure

authorization in a simple, elegant and standard method

from web, mobile and desktop applications. Today many of
the social media websites like Google, Facebook, Twitter

etc are making use of OAuth technology to implement their

delegated access control needs.

REFERENCES

[1] Credit:Some content adapted from hueniverse.com.

[2] More information is available on OAuth.net

[3] O'Reilly: OAuth 2: The Definitive Guide

[4] Rivest, R.; Shamir, A.; Adleman, L. (1978). "A

Method for Obtaining Digital Signatures and Public-

Key Cryptosystems". Communications of the ACM

21 (2): 120–126. doi:10.1145/359340.359342

[5] Man in the middle Attack:
http://www.veracode.com/security/man-middle-attack

[6] “The Keyed-Hash Message Authentication Code

(HMAC)” Federal Information Processing Standards

Publication Category: Computer Security

Subcategory: Cryptography.

[7] Secure Hash Algorithm (SHA-1), National Institute

of Standards and Technology, NIST FIPS PUB 186,

"Digital Signature Standard,", U.S. Department of

Commerce, May 1994.

[8] Introduction to Secret Sharing,

http://www.cs.berkeley.edu/~daw/teaching/cs276-

s04/22.pdf

[9] Tutorial on Network Attacks:

http://backtracktutorials.com/backtrack-

wireless/packet-sniffing-and-injecting/
[10] Phillip Rogaway,”Nonce-Based Symmetric

Encryption”,

http://web.cs.ucdavis.edu/~rogaway/papers/nonce.pdf

GET /photos?size=original&file=vacation.jpg HTTP/1.1Host:

photos.example.net:80Authorization: OAuth

realm="http://photos.example.net/photos",

oauth_consumer_key="dpf43f3p2l4k3l03",

oauth_token="nnch734d00sl2jdk",

oauth_nonce="kllo9940pd9333jh",

oauth_timestamp="1191242096",

oauth_signature_method="HMAC-SHA1", oauth_version="1.0",

oauth_signature="tR3%2BTy81lMeYAr%2FFid0kMTYa%2FWM%3D"

http://hueniverse.com/
http://oauth.net/
http://shop.oreilly.com/product/0636920023531.do
http://www.cs.berkeley.edu/~daw/teaching/cs276-s04/22.pdf
http://www.cs.berkeley.edu/~daw/teaching/cs276-s04/22.pdf
http://backtracktutorials.com/backtrack-wireless/packet-sniffing-and-injecting/
http://backtracktutorials.com/backtrack-wireless/packet-sniffing-and-injecting/

