
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 546

PERFORMANCE EVALUATION OF LARGER MATRICES OVER

CLUSTER OF FOUR NODES USING MPI

Sampath S
1
, Bharat Bhushan Sagar

2

1
Departmen

t
of CS&E, Research Scholar, Shri Venkateshwara University, Gajraula, Uttarpradesh, India

2
Department of CS, Assistant Professor, Birla Institute of Technology, Noida, Uttarpradesh, India

Abstract
Parallel computing operates on the principle that large problems can often be divided into smaller ones, which are then solved

concurrently to save time (wall clock time) by taking advantage of non-local resources and overcoming memory constraints. The

main aim is to form a cluster based parallel computing architecture for MPI based applications which demonstrates the

performance gain and losses achieved through parallel processing using MPI. This can be realized by implementing the parallel

applications like solving matrix multiplication problem, using MPI. The architecture for demonstrating MPI based parallel
applications works on the Master-Slave computing paradigm. We aim to evaluate the time statistics of parallel execution and do

comparison with the time taken to solve the same problem in serial execution. We also demonstrate communication overhead

involved in parallel computation. The results with runs on different number of nodes are compared to evaluate the efficiency of

MPI based parallel applications. We also show the performance dependency of parallel and serial computation, on RAM. Finally

we show the relationship between the number of slave processes to be specified for computation and the number of cores

available for parallel computation.

Keywords: Parallel Execution, Cluster Computing, Symmetric Multi-Processor (SMP), MPI (Message Passing

Interface), RAM (Random Access Memory).

--***--

1. INTRODUCTION

Parallel processing refers to the concept of speeding up the

execution of a program by dividing the program into

multiple fragments that can execute simultaneously, each on

its own processor. This paper deals how to handle Matrix

Multiplication problem that can be split into sub-problems

and each sub-problem can be solved simultaneously. With

computers being networked today, it has become possible to

share resources like files, printers, scanners, fax machines,

email servers, etc. One such resource that can be shared but

is generally not, is the CPU. Today's processors are highly

advanced and very fast, capable of thousands of operations
per second. If this computing power is used collaboratively

to solve bigger problems, the time taken to solve the

problem can reduce drastically.

1.1 Existing Frameworks

 MPI: The specification of the Message Passing

Interface (MPI) standard 1.0 [5] was Completed in

April of 1994. This was the result of a community

effort to try and define Both the syntax and semantics

of a process message-passing library that would be

useful to a Wide range of users and implemented on a

wide range of Massively Parallel Processor (MPP)

platforms.

 MPI2: All major computer vendors supported the MPI

standard and work began on MPI-2, where new

functionality, dynamic process management, one-sided

communication, cooperative I/O, C++ bindings,

Fortran 90 additions, extended collective operations,

and miscellaneous other functionality were added to

the MPI-1 standard [5]. MPI-1.2 and MPI-2 were

released at the same time in July of 1997. The main

advantage of establishing a message-passing standard

is portability.

 Openmp: It has emerged as the standard for shared-

memory parallel programming. The openmp

application program interface (API) provides

programmers with a simple way to develop parallel
application for shared memory parallel computing.

 MPICH2: An all-new implementation of MPI designed

to support both MPI-1 and MPI-2. In MPICH2, the

collective routines are significantly faster and has very

low communication overhead than the “classic” MPI

and MPICH versions [6].

1.2 Framework used in the Proposed System

This paper deals with the implementation of parallel

application, matrix multiplication under MPI using MPICH2

for communication between the process and for the

computation. Because they are very much suitable to

implement in LINUX systems

2. RELATED WORKS

Traditionally, multiple processors were provided within a

specially designed "parallel computer"; along these lines,

Linux now supports SMP Pentium systems in which

multiple processors share a single memory and bus interface

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 547

within a single computer. It is also possible for a group of

computers (for example, a group of PCs each running

Linux) to be interconnected by a network to form a parallel-

processing cluster [7]. Amit Chhabra, Gurvinder Singh

(2010) [1] proposed Cluster based parallel computing

framework which is based on the Master-Slave computing
paradigm and it emulates the parallel computing

environment. Petre Anghelescu (2012) [2] showed how the

implementation of a matrix multiplication on a network

computers can be accomplished using the MPI (Message

Passing Interface) standard and presented extensive

experimental results regarding the performance issues of

matrix parallel multiplication algorithms. Rajkumar Sharma,

Priyesh Kanungo, Manohar Chandwani (2011) [3] evaluated

performance of parallel applications using MPI on cluster of

nodes having different computing powers in terms of

hardware attributes/parameters. Sampath S, Sudeepa,
Nanjesh B.R (2012) [4] presented the MPI framework that

demonstrates the performance gain and losses achieved

through parallel/distributed processing and made the

performance analysis and evaluation of parallel applications

using this cluster based parallel computing framework. We

aim to present an architecture using MPI that demonstrates

the performance gain and losses achieved through

parallel/distributed processing. And also demonstrates the

performance dependency of parallel applications on RAM.

3. SYSTEM REQUIREMENTS

3.1 Hardware Requirements

 Processor: Pentium D (3 G Hz)

 Two RAM: 1GB and 2GB

 Hard Disk Free Space: 5 GB

3.2 Software Requirements

 Operating System : Linux

 Version: Fedora Process 14

 Compiler: GCC

 Network protocol: Secure Shell

 Communication protocol: MPI

4. SYSTEM DESIGN

4.1 Cluster Based Parallel Computing architecture

The main problem is taken by the master process and

assigns the task into slave process. Each slave process send

back the solutions of the assigned sub problem. The working

principle involved in this architecture is shown in Fig.1

shows the cluster based parallel computing architecture.

4.2 MPI Configuration

Download the mpich-2 package and type the following

commands in the terminal to install.

Unpack the tar file and go to the top level directory:

tarxzf mpich2-1.3.2.tar.gz

cd mpich2-1.3.2

Configure MPICH2 specifying the installation directory:
./configure --prefix=/home/<USERNAME>/mpich2-install

|& tee c.txt

Build MPICH2:make 2>&1 | tee m.txt

Install the MPICH2 commands:

Make install 2>&1 | tee mi.txt

Add the bin subdirectory of the installation directory to your

path in your startup script (.bashrc for bash, .cshrc for csh):

PATH=/home/<USERNAME>/mpich2-install/bin:$PATH;

export PATH.

http://en.wikipedia.org/wiki/Communications_protocol

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 548

Fig 1.Cluster based parallel computing architecture using three nodes

5. IMPLEMENTATION

The problem to be solved has to be parallelized so that

computation time is reduced. The architecture consists of a

client, a master process, capable of handling requests from

the client, and slave, capable of accepting problems from the

master and sending the solution back. The master and the

slave communicate with each other using MPICH2 under

MPI. The problem has to be divided such that the

communication between the master and the slaves is

minimum. The total computational time to solve the

problem completely is effected by the communication time
between the nodes.

5.1 Parallel Matrix Multiplication Design

In the algorithm which we have implemented is for solving

matrix multiplication problem on several nodes it may be for

only one or more slaves. It divides the matrix into set of

rows and sends it to the slaves rather than sending one row

at a time [6].The slaves compute the entire set of rows that

they have received and send it back to the master in one

send operation. Hence, we need to implement parallel

systems consisting of set of independent desktop PCs

interconnected by fast LAN cooperatively working together

as a single integrated set of independent desktop PCs
interconnected by fast LAN cooperatively working together

as a single integrated computing resource so as to provide

higher availability, reliability and scalability. But to show

the performance dependency on RAM we are considering

only single node with two processes, one act as master and

other as slave. So there will be no division of problem,

instead entire problem is submitted to the single available

slave. Rest of the work is carried out with the multiple

nodes. Consider two matrix, matrix A and B. The flow of

multiplication of matrix A and B takes place as shown in

Fig. 2a. The operations involved in dividing first matrix into

set of rows and multiplying each set with entire second

matrix giving resultant matrix is shown in Fig. 2b.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 549

Fig 2a Flow diagram for solving matrix multiplication problem on several Nodes Fig 2b Parallel matrix multiplication design

6. RESULTS AND ANALYSIS

Case1: Analysis to show the relation between number of

cores and the number of processes. If multiple hosts are in

the hostfile, then mpirun will attempt to run processes on

these hosts, in our work we use three nodes each of having

two cores. MPI by default start assigning the slaves to cores

present in first host or master host and then to the cores

present in next host. MPI follows the order which is present
in hostfile for the utilization of nodes. Table I shows that If

the number of processes created is n then the number of

cores utilized is equal to n.

The number of processes can be greater than the number of

available cores, then mpirun will loop to the first host in the

hostfile and continue until all processes have been assigned

but this just means they are oversubscribed. In such cases

due to the oversubscription, the computation time will be

more than the computation time obtained for the m number

of processes, where m is the total number of available cores.

Table 1 and Table 1 shows that computation time obtained

for 9 and 10 processes, is more than the computation time

for 8 slaves, where total available number of cores is 8.

Case 2: Multiple nodes analysis with higher order

matrices (computation > communication). Table 1 shows
that for matrix of higher order, the performance of the

system increases phenomenally with increase in number of

nodes. As the size of the matrix increases the computation

time also increases. The computation is so large that the

communication is negligible compared to it. Since the

computation will be more for larger matrices, it needs more

number of nodes depending upon the size of the matrix to

give better performance. Hence for larger matrices, we get

optimal computation time over the four nodes, as our work

is limited to four nodes.

Table 1 Performance of MPI for larger order matrices (at 1GB RAM, all time in seconds)

Number of

processes

(1 master +

slaves)

Number of

cores

utilized

Number of

nodes

utilized

1000*1000

1500*1500

2000*2000

2500*2500

3000*3000

2 2 1 10.269120 35.748371 82.646102 164.648721 286.507145

3 3 2 6.454944 20.521835 46.625184 90.571434 156.261247

4 4 2 5.73351 17.461328 38.394196 73.479432 134.337615

5 5 3 5.281018 14.912146 31.855243 58.541683 102.674381

6 6 3 5.798123 15.171543 31.251527 56.816513 97.621531

7 7 4 5.863169 15.349281 34.196192 70.358763 106.257814

8 8 4 5.912532 15.718843 36.192183 75.481966 113.657381

9 8 4 6.012345 15.912356 39.876512 76.012654 114.106743

10 8 4 6.874532 16.567432 4.2316741 77.654675 115.277643

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 550

6. CONCLUSION

We presented a model that demonstrates the performance

gain and losses achieved through parallel processing. Matrix

multiplication problem is solved in parallel under MPI. We

also demonstrated the communication overhead involved in

parallel computation. The results with runs on different

number of nodes are compared to evaluate the efficiency of
MPI based parallel applications. The total time taken to

compute the result decreases drastically when the number of

nodes increases.

FUTURE WORKS

Even though the method that has been used here can be

deployed to solve larger order problems, it is cumbersome to

give the data input for matrices of larger order. Hence this

work can be extended to give input from files for larger

order matrices. It can also be extended to solve other similar

problems related to matrices, like finding the determinant

and other backtracking problems. The analysis is also useful

for making a proper recommendation to select the best
algorithm related to a particular parallel application. We

limited the number of nodes tofour and it can be extended.

REFERENCES

[1] Amit Chhabra, Gurvinder Singh "A Cluster Based

Parallel Computing Framework (CBPCF) for

Performance Evaluation of ParallelApplications",

International Journals of Computer Theory and

Engineering, Vol. 2, No. 2 April, 2010.

[2] Petre Anghelescu, “Parallel Algorithms for Matrix

Multiplication”, 2012 2nd International Conference

on Future Computers in Education, Vols.23-24, 2012.

[3] Rajkumar Sharma, Priyesh Kanungo, Manohar

Chandwani, “Performance Evaluation of Parallel
Applications using Message Passing Interface in

Ntework of Workstations of Different Computing

Powers”, Indian Journal of Computer Science and

Engineering(IJCSE), Vol. 2,No. 2, April-May 2011.

[4] Sampath S, Sudeepa K.B, Nanjesh B R “Performance

Analysis and Evaluation of Parallel Applications

using a Cluster Based Parallel Computing

Framework”, International Journal of Computer

Science and Information Technology Research

Excellence (IJCSITRE), Vol.2,Issue 1,Jan-Feb 2012.

[5] Message Passing Interface, MPI Standard:
http://www.mpi-form.org.

[6] MPICH2: A New Start for MPI Implementations,

Recent Advances in Parallel Virtual Machine and

Message Passing Interface, Lecture Notes in

Computer Science, Volume 2474, 2002, p 7.

[7] A. Nazir, H. Liu, and S.-A. Sørensen, “On-demand

resource allocation policies for computational

steering support in grids, ” in International

Conference on High Performance Computing,

Network and Communication Systems, Orlando,

USA, 2007.

