
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 453

A NOVEL APPROACH FOR TEACHING SYSTEM SOFTWARE BY

INTEGRATING WITH OTHER COURSES

Nagarathna D Kulenavar
1
, Shameeda Begum T

2

1
Associate Professor, Department of Computer Science and Engineering, BVBCET, Karnataka, India

2
Assistant Professor, Department of Computer Science and Engineering, BVBCET, Karnataka, India

Abstract
Teaching individual courses in our curriculum is done with inadequate focus on integrating the learning with other courses. This

results in students not appreciating the courses showing less interest in learning process. This paper presents the new approach

developed by us to teach the system software theory and practical courses for the computer science students. In this approach we

are integrating the System Software course with the learning in the course on Microprocessor 8086, Microcontrollers and its

Applications. Further this paper elaborates as how the use of a hypothetical machine in conventional teaching gave the freedom
to teach system software concepts but failed to connect to reality. The method followed in this new teaching approach is that it

relates all the concepts taught in system software with the real-time system/machines instead of hypothetical machine. It provides

the flow that correlates the course with the existing software. This paper also explains how the changes in technology helped to

consider real-time machine as an example while teaching concepts of system software rather than hypothetical machine. This

paper also through light on the limitations of teaching the System Software course with hypothetical machine, the challenges

faced during the change in syllabus and a brief explanation on the chosen real-time machine. We have observed better learning of

the concepts of systems software through this approach. The result analysis prove, connecting the learning in courses taught in

early semesters in the delivery is observed to help in building the learning context. It has resulted in improving their performance

and understanding in the course.

Keywords: System Software, teaching approach, real-time machine, hypothetical machine, practical approach.

--***--

1. INTRODUCTION

One of the most frequently encountered phenomena in

education systems is that of curriculum change. Though it is

enthusiastically welcomes by progressives and regretted by

traditionalists it is accepted by teachers and administrators

as one of the recurring features of educational life. If

education is to fulfill it’s most basic function that is

technology change it has to respond to the changing pattern

of syllabus [1].

The System Programming or System Software is usually a

core course for computer science curriculum at under

graduate level. The main purpose of the System Software

course is to strengthen system programming skills of

students. As there is a close relationship between system

software and machine architecture undergraduate students

will be taught the design and implementation of different

system software such as assembler, linker and loader [4].

Limitations of existing System Software course is that it was
taught using hypothetical machine as a result students

cannot correlate it with real time existing machine. Also

studies have found that market appeal/industry demand is

one of the most important factors affecting machine choice

in computer science education [3]. Therefore change in

teaching methodology is required.

In this paper we proposed a new teaching methodology with

revised course content by replacing hypothetical machine to

real time machine to study System Software. The new

syllabus (course content) now includes 16-bit 8086

microprocessor. The new syllabus overcomes the limitations

of old syllabus by helping students to develop system

software for real time existing machines. This approach
found to have a creative impact on students.

The System Software course and its corresponding lab is

introduced at the sixth semester level which is of four

credits with two minor exams, semester end exam and

course project. The questions of minor and semester end

exam are framed to test the learning levels of students

according to the blooms taxonomy. The course along with

the delivery and evaluation method addresses technical

outcome of the program.

2. IMPORTANCE OF SYSTEM SOFTWARE

COURSE IN COMPUTER SCIENCE

CURRICULUM

The computer science engineer must have skills in

networking, database management, system programming,
assembly language programming, and web designing and so

on. The system programming skill is incorporated among

students by teaching them courses such as System Software,

Compiler Design and Finite Automata and Formal

languages (FAFL).

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 454

Earlier System Software course was introduced in fifth

semester which covers different hypothetical machine

architectures, Assemblers, Loaders etc. As a fact any high

level language program written in any of the programming

language like C, C++ and Java is to be converted into

assembly language program by compiler, the assembly
language program is translated into machine level language

by assembler and this machine level language is loaded in

the memory by loader. Then any task execution is possible

by bringing that task into memory. Thus assembling and

loading are the two system processes which computer

science engineers must know. In order to understand

assembling, loading and other system related functionalities

System Software course is introduced in Computer Science

Curriculum.

3. CONVENTIONAL TEACHING

The system software like assembler, linker and loader are all

dependent on machine architecture, therefore we need to
first select a machine and teach it's architecture in order to

make students understand assembling, linking and loading

process.

In early days system was a black box and people had very

less knowledge about the system. So, System Software was

taught conventionally using model machines or systems

called hypothetical machines such as Simplified

Instructional Computer(SIC) and Simplified Instructional

Computer/extended(SIC/XE). These hypothetical machines

are not real time machines they just simulate and help us
understand the assembling, linking or loading process. They

include very less complexity which in turn makes system

software designing, implementation easy and even fast.

As depicted in the Fig-1, the input for the SIC or SIC/XE

hypothetical machine is the assembly language program of

that machine. This assembly language instruction set is

simple and is used only to show the simulation and not the

actual working in real world. This assembly language

program is translated into the machine level language based

on the architectural features and instruction set of the

hypothetical machine. Thereby the converted machine
language program is linked and loaded in to the memory for

execution.

Fig -1: Conventional Teaching using hypothetical SIC or

SIC/XE machine

4. LIMITATIONS OF CONVENTIONAL

TEACHING

In reality there are many real time machines which already

exist and students of our institution would have studied

some of the real time machines architecture in their earlier

semester courses like Computer Organization and CSDA.

This induces us to think, why to teach System Software

course using hypothetical machine? It is not possible to

realize real time problems and it failed to connect to reality.
Conventional teaching has following other limitations:

 Unable to analyze exiting system software code of

any real time machine.

 Complexity in understanding other machine

architectures.

 Complexity in implementing algorithms of real time

machine system software.

 Learning hypothetical machine is of little use.

 We are unable to practice assembly language

programs on already existing assemblers like

MASM, TASM, and NASM.

5. PARADIGM SHIFT

It is thus realized that change in teaching approach is

essential. Therefore hypothetical machines are replaced by

real time machine as shown in Fig-2

To overcome the limitations of conventional teaching,

System software course is to be taught by means of real time

machine. Thus there was a transformation from hypothetical

to real-time machine to study system software. As depicted

in the Fig-2, the input for the real time machine is the

assembly language program of that machine. This assembly

language program is translated into the machine level
language based on the architectural features and instruction

set of the chosen real time machine. Thereby the converted

machine language program is linked and loaded in to the

memory for execution.

Fig -2: Transformation from hypothetical to Real-time

machine

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 455

6. NOVEL SYLLABUS

Now, our current syllabus includes 8086 Microprocessor as

a real time machine to demonstrate, design and develop

system software, which is a novel approach to teach system

programming.

8086 is a general purpose Microprocessor used in many
applications. 8086 is chosen as it provides a varied

instruction set and has several advanced architectural

features designed to support multiprogramming and

multiprocessing [2]. Segmentation is the concept which is

introduced in 8086 machine which in turn form base for an

Object Oriented concepts and even for the subjects where

segmentation is used.

6.1 How it Worked?

The replacement of hypothetical with 8086 machine worked

very successfully till end of the semester. It teaches students

regarding designing of real-time machine’s system software

and their architectural features. In addition, the course builds
skills in programming, code reading/analysis debugging and

independent learning skills.

6.2 Challenges in New Syllabus

1. Difficulty and time consuming in understanding

existing machine architectural features:

Example1: Memory in SIC is 2 to the power 15 bytes.

Knowing only size is all about memory details of

SIC. But 8086 microprocessor memory is totally

different which has segmented memory. Hence it is

difficult and time consuming.

Example2: Most of the instructions of SIC or SIC/XE

uses either one or two instruction formats where as

8086 microprocessor’s single instruction uses one to

six instruction formats which increases

implementation complexity[5].

2. Difficulty in the implementation of pass1 of two pass

assembler algorithm for an existing machines:

Example1: Most of the instructions of SIC have fixed

size. So, pass1 algorithm in SIC is implemented by

adding size to generate addresses. And in SIC/XE,

there are some markers to identify the size of the

instructions. Depending on the marker its

corresponding size is added to generate addresses in

pass1 implementation. Where as in 8086

Microprocessor or in any other real time existing
machines, instructions size is not fixed and even there

are no markers to identify the size of the instruction

[5]. So, it is difficult to implement 8086 Pass1

assemblers.

6.3 Evidences

As a part of course projects each group of students were

assigned other machines like Microcontroller and 8085

microprocessor to carryout case study. Students were able to

designed and implemented assemblers for these two

machines successfully. Teaching system software with 8086

real time machine helped them to bring out similarities and

differences with other real time machines and understand
system software of those machines. Result analysis also

shows significant growth in their performance, as shown in

Chart-1.

0

5

10

15

20

25

30

35

40

45

50

Jan-11 Jan-12 Jan-13 Jan-14

Grade S

Grade A

Grade B

Grade C

Grade D

Grade E

Grade F

Grade I

Grade X

Chart -1: Result Analysis, X axis - Batch of student, Y axis - Number of students in percentage

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 456

Table -1: Grade equivalent percentage

S

Grade

A

Grade

B

Grade

C

Grade

D

Grade

E

Grade

F

Grade

=>90% 75-

89%

60-

74%

50-

59%

45-

49%

40-

44%

<40%

7. CONCLUSION AND FUTURE WORK

This novel approach to teach System software for existing

real time machines gives more practical knowledge,

improves thinking ability, makes other existing software
code analysis and adaptation from one machine to other

machine easy.

The overall outcome indicates that the adoption of real time

machine has significantly been encouraging in terms of

students overall growth and develops a kind of thinking they

are likely to find valuable. Majority of the students have

expressed their satisfaction over the changes introduced in

syllabus.

As a future work 8086 Microprocessor can be replaced by

either 8051 Microcontroller which in turn have its own
application in embedded systems or any other more

advanced processors.

ACKNOWLEDGEMENTS

The authors wish to thank Department of Computer Science

and Engineering of B.V.Bhoomaraddi College of

Engineering and Technology. This work was supported by

Prof. K.R. Biradar(Head of the Department, Computer

Science and Engineering), Principal Dr. Ashok S. Shettar(

BVBCET, Hubli, Karnataka, India) and Prof. GopalKrishna

Joshi. Our sincere thanks to all those who are directly or

indirectly involved in this work.

REFERENCES

[1] Editorial Introduction: The process of curriculum

change by S. JOHN EGGESTON, Keele.

[2] MICROPROCESSOR SYSTEMS: THE 8086/8088

FAMILY: Architecture, Programming, and Design,

2nd Ed. By Yu-Cheng Liu and Glenn A. Gibson.

[3] M. de Raadt, R. Watson, and M. Toleman.

Introductory programming: what’s happening today

and will there be any students to teach tomorrow? In

Proceedings of the 6th Conference on Australasian

Computing Education, pages 277–282. Australian

Computer Society, Inc., 2004.

[4] Leland. L. Beck and D. Manjula: System Software,
3rd Ed, Pearson Education, 2007.

[5] Douglas V. Hall: Microprocessor and Interfacing, 3rd

Ed, Tata McGraw Hill, 2007.

BIOGRAPHIES

Name: Nagarathna D Kulenavar

Designation: Associate Professor.

College: B.V. Bhoomaraddi College of

Engineering & Technology

Area of Interest: Translators

(Assemblers).
Contact No: 9844915127

Email-id: kulenavar@bvb.edu

Name: Shameeda Begum T

Designation: Assistant Professor.

College: B.V. Bhoomaraddi College of

Engineering & Technology

Area of Interest: Translators

(Assemblers).

Contact No: 9916076848

Email-id: shameeda@bvb.edu

