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Abstract

The ternary cubic equation 5(X* +y?) —9xy + X + Y +1 =35z is considered for determining its non-zero distinct integral

solutions Employing the linear transformations x=u+v,y=u-v (u#v#£0),and employing the meyhod of factorization in complex
conjugates, different patterns of integral solutions to the ternary cubic equation under consideration are obtained.. In each
pattern, interesting relations among the solutions, some special polygonal , pyramidal numbers and central pyramidal numbers
are exhibited.
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1. INTRODUCTION 2.1 Method 1
Diophantine equations are numerously rich because of its Take z = a2 +19b? (@)
variety. The determination of integral solutions for cubic(
homogeneous or non-homogeneous) diophantine equations ] . )
with three variables has been an interest to mathematicians Write 35=(4+iv19)(4-iv19) ®)
since antiquity as can be seen from [1-3].In this context one
may refer [4-24]. In this Communication, the non- Using (4) and (5) in (3) and employing the method of
homogeneous ternary cubic diophantine equation factorization, define
represented by 5(X*+Yy?)—9xy+x+y+1=352% is _ _ _ ,
considered for its non-zero distinct integral solutions. A few (U+D)+iv19v = (4+iv19)(a+iv19) (6)
interesting relations between special polygonal numbers and
pyramidal numbers are exhibited. Equating real and imaginary parts of (6) on both sides we
get

2. METHOD OF ANALYSIS:
The ternary cubic diophantine equation under consideration u+1=4a®-57a’h-228ab’ +361°
1S v=a®+12a’h-57ab* - 76b°

5(x* +y?)—9xy+ X+ y +1=357 @ Substituting the values of u,v in (2) the non-zero distinct

integral solutions to (1) are given by
Introduction of the transformations
X =5a® —45a°b — 285ab” +2850° -1
X=U+V, y=Uu-V 2)
y =3a®-69a’b—-171ab’ + 437b° -1

in (1) leads to 7 =a2 +19p2

(u+1)? +19v* = 35z2° (3) Properties:

_ _ , 1)  x(@l)—-30P}, +t,, =—40(mod-324)
Equation (3) is solved through different methods and thus, ’
we obtain different patterns of solutions to (1) 2)  y(al)—x(al)+3CP} +ty,, =60(mod92)

3  4x(@l-y(al)+8z(al)-19S, +82t,,.]+76
is a cubical integer
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4 23z(al)-y(al +2CP’ -138,, =1(mod124)  Write'l"as
L 9+iV19)(9-iv19)

102

5) 10y(a+1a)—360P>, —280CP; +140PR, +1]
is a perfect square

6) X(1,B)+570R; +45PR, +525,, is a perfect Define

square . (4+iv/19)(a +i+190)° (9 +i+/19)
7 2[z(Lb)-1]-19(CS, +Gno,) =0 (u+1+iv19v) = 0
8) z(al)-2t;, +t;, =0(modl9) Y]

Note: Equating real and imaginary parts, we have

Re-writing (5) as 1
U+1l=-—[17a% - 741a%b —969ab? + 469D°]
35 = (-4 +i+/19)(—4 —i+/19) 10

8)
and proceeding as in methodl, the non-zero distinct integral 1
solutions to (1) are given by v :_[13a3 +51a2b — 741ab? —323b3] 9)
10
x =-3a’ -69a’b +171ab® + 4370° -1 , o : :
Since our aim is to find integer solutions, assuming a=10A
y =-5a® —45a°b + 285ab® + 285b°% -1 and b=10B in (4),(8) and (9) and substituting the values of
) ) u,v in (2), we obtain the distinct non-zero integral solutions
z=a"+19% to (1) as
2 3 2 2
2 2 Method 2: x =107[30A° —690A°B -1710AB* +4370] -1
Equation (3) can be written as y= 10 [4A3 —792A’B - 228AB* + 5016] -1

z =10%[A? +19B*
(u+1)* +19v* =352°.1 [ |

Properties:

1) %[my(A,l) ~x(A1)+9)-6P?, +723PR, = 4579(mod667)
2) %(4(X(A,1) +1) —30(y(A1) +1) +10°.133) is a nasty number

3) %[X(A,l) +10y(A1) +11]-3CP,* +1722, , =5453(mod466)
2 %[4Az Yy +501599 ~ t,qy; , = 0(M0d1095)

2.3 Method 3: Proceeding as in method 1 and performing some algebra, we

. obtain the distinct non-zero integral solutions to (1) as
Instead of (5),35can be written as

X =2°[12A° - 24A’B — 684AB* +152B°] -1
y = 22[L0A® — 90A2B —570AB? +570B°] -1
z=2°[A* +19B?]

_ (11+iV19)(11-i19)

35 .
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Properties:
1) X(A1)—24S0, +t,, , =607(Mod2807)

2)  x(A1)-y(Al)—4[66PR, —90Gno, —508]i
s a cubical integer.

3 z(A)- 2t181A —12t12’A —31Gno, —31is a
perfect square

4)  y(1,B)—114050, +10t,s , =39(Mod1490)

Note:
Rewriting (7) as

((U+2) +iv19v) = (~4+i419)(a + i\/ﬁb)‘*(%)

and proceeding as in method 2, the non-zero distinct integral
solutions to (1) are given by

X = 2°[-10A® —90A’B +570AB* +570B°] -1
y = 22[-12A° — 24A’B + 684AB2 +152B°] -1
z=2%[A* +19B%]

2.4 Method 4:

Equation (7) can be written as
((U+D) +iv19v) = @(a + i@b)%%)

Equating real and imaginary parts on both sides and
assuming a=2A, b=2B, we get

u+1=2%[8A° ~114A’B — 456AB* + 722B°]
v=2°[2A° + 24A’B —-114AB* —~152B°]

Also (4) implies
z = 4(A* +19B?%) (10)

Substituting the values of u,v in (2) we obtain the non-zero
integral solutions to (1) as

X = 40[A° ~9A*B-57AB* +57B°] -1

y =8[3A° —69A°B —171AB” + 437B°*] -1
along with (10).

3. CONCLUSION

In this paper, we have made an attempt to obtain a complete
set of non-trivial distinct integral solutions for the non-
homogeneous ternary cubic equation. To conclude, one
may search for other choices of solutions to the considered
cubic equation and further cubic equations with
multivariables.

NOTATIONS:

= 070102

P = {n(nTle))}[(m ~2)n+(5-m)]

S,=6n(n-1)+1
SO, =n(2n*-1)
CS, =n’+(n-1)?
GnO, =2n-1

PR =n(n+1)

n

n(n® +1)

CcP? =
2

n(3n* -1)

CP’ =
2

n(7n® —4)

CPM =
: 3
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