
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 429

IMPLEMENTATION OF REDUCING FEATURES TO IMPROVE CODE

CHANGE BASED BUG PREDICTION BY USING COS-TRIAGE

ALGORITHM

Veena Jadhav
1
, Vandana Gaikwad

2
, Netra Patil

3

1
Student, Computer Engineering Department, BVDUCOE Pune-43, Maharashtra, India

2
Assistant Professor, Computer Engineering Department, BVDUCOE Pune-43, Maharashtra, India

3
Assistant Professor, Computer Engineering Department, BVDUCOE Pune-43, Maharashtra, India

Abstract
Today, we are getting plenty of bugs in the software because of variations in the software and hardware technologies. Bugs are

nothing but Software faults, existing a severe challenge for system reliability and dependability. To identify the bugs from the
software bug prediction is convenient approach. To visualize the presence of a bug in a source code file, recently, Machine

learning classifiers approach is developed. Because of a huge number of machine learned features current classifier-based bug

prediction have two major problems i) inadequate precision for practical usage ii) measured prediction time. In this paper we

used two techniques first, cos-triage algorithm which have a go to enhance the accuracy and also lower the price of bug

prediction and second, feature selection methods which eliminate less significant features. Reducing features get better the quality

of knowledge extracted and also boost the speed of computation.

Keywords: Efficiency, Bug Prediction, Classification, Feature Selection, Accuracy.

--***--

1. INTRODUCTION

Classifiers such as SVM and navies byes are accomplished

on previous software project information, also it can be

expended to estimate the presence of a bug in an specific

record in software, as complete in previous work[2].

To fix bug cos-triage algorithm is used. Afterward that data

is added in historical data or in log record. Afterward,

classifier is accomplished on data originate in previous log

record. Then, it can be expended to categorize a renewed

variation is either buggy or clean.

Now days, The Eclipse IDE contains a prototype displaying

server which is used to compute bug predictions [4]. It can

aslo offer accurate predictions. Bug prediction system must

offer a lesser number of incorrect variations that are

predicted to be pram but which are very new, if software

developers are to belief [3]. Suppose, if enormous numbers

of improved variations are incorrectly estimated to be pram,

engineers won’t have belief in the bug prediction.

Previous bug prediction methodology and identical work

offered by scientist which employ the removal of “features”
from the prior of variations created to a software system[2].

These features comprise completely distributed by blank

space in the code and that all were included or rejected in a

variation. Henceforth, to prepare the SVM classifier entirely

variables, comment words, numerical operatives, name of

methods, and development language keywords are used as

features which is existing in this paper.

Cost of large feature set is tremendously high. Because of

multiple interactions and noise classifiers cannot handle

such an enormous feature set. As well as number of features

increases time also increases and expanding to a number of

seconds per categorization for tens of thousands of features,

and minutes for enormous project data accounts.

Henceforth, this will influences the availability of a bug

prediction scheme.

There are several classification approaches could be

working. But in this paper we used cos-triage algorithm and

SVM.

1) This paper contributes three aspects:

2) Study of various feature selection methods to

categorize bugs in software program variations.

3) Use of cos-triage algorithm to increase accuracy and

reduce cost of bug prediction.

The rest of this paper is prepared as follows: In Section 2

primary steps involved in performing change classification

is presented. Also this section discuss about feature selection
techniques in more detail. Section 3 discuss prior work.

Section 4 contains system overview for proposed system.

Finally a conclusion is made in section 5.

2. CHANGE CLASSIFICATION PROCESS

Following steps are concerned in executing Various

categorization on distinct project. Creating a Corpus:

1) Change deltas are mining from the log records of a

project, as kept in its SCM repository.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 430

2) For each file bug fix variations are known by observing

keywords in SCM variation log messages.

3) At the record level without bug and buggy variations are

known by finding reverse in the review log record from bug

resolve.

4) Features contain both buggy and clean and that mined
from all variations. In Complete source code all expressions

are considered as features. Features are nothing but the lines

fitted in each variation, meta-data such as author, time etc.

we can calculate complexity metrics at this stage.

5) In this paper to compute a reduced set of features

combination of wrapper and filter approaches are used. In

this paper four filter based rankers are used. i) Relief-F. ii)

Chi-Squared iii) Gain Ratio iv) Significance. The wrapper

methods are depends on the SVM classifiers.

6) Classification model is accomplished by using reduced

set.
7) Skilled classifier is set to use. Whether a original

variation is more analogous to a buggy variation or a clean

variation is proven by classifier.

2.1 Detection of Buggy and Clean Changes

For bug prediction training data is fixed and used. Mining

variation log records is used to determine bug introducing

variations and to identify bug fixes. First is Examining for

keywords in old revision such as “Set” “Bug” or other

keywords possible to develop in a bug repair.second,

Examining for another situations to bug.

2.2 Feature Extraction

With the help of support vector machine algorithm, using

buggy and clean variations a classification model must be
accomplished which is used to consolidate software

variations.

The entire word in the source code programme distributed

with the help of blank space or a semicolon which is used as

a article .Example of that is method name, keyword,

variable name, comment word, function name and operator.

2.3 Feature Selection Techniques

Huge feature groups need extended working out and

estimation periods, also need lot of memory these are the

requirement to execute classification.

Feature selection is common solution to this problem In
which only the subcategory of structures that are generally

suitable for creating grouping outcomes are truly used.

2.4 Feature Selection Process

A repetitive process of choosing increasingly fewer

important group of features is finished by using Filter and

wrapper approaches.

This process starts by splitting the primary feature set in

partial which reduces processing requirements and memory

for the remaining process.

A classification model is accomplished by using the reduced

feature set. Whether a new variation is more associated to a

buggy variation or a clean variation is decided by classifier.

3. RELATED WORK

A model proposed by scientist Khoshgoftaar and Allen to

group modules corresponding to software quality factors
such as upcoming defect intensity using different phases of

multi-regression[5][6][7]. Ostrand et al. discovered two

model i) The top 20% of problematic records in a project

[11] using upcoming defect predictors ii) A linear regression

model

Totally Ordered Program Units could be transformed into a

half ordered suite list, e.g. by giving the topmost N% of

units as offered by Ostrand et al. Hassan and A caching

algorithm to compute the set of fault-prone modules, called

the topmost-10 list offered by halt [9]. The bug cache

algorithm to envisage upcoming faults built on preceding
fault areas offered by Kim et al.

Fault sessions of the Mozilla project through numerous

releases offered by Gyimothy et al. [11]. With the help of

decision trees and neural networks that use object-oriented

metrics as features. Six different feature selection techniques

when using the Naive Bayes and the C4.5 classifier

considered by Hall and Holmes [12] .There are about 100

features in each dataset. Hall and Holmes launched many of

the feature selection methods.

A general defect prediction framework which encompass a

data pre-processor, feature selection methods, and machine

learning algorithms elaborated by Song et al. [14]. They also

consider that slight variations to data illustration can have a

vast influence on the outcomes of article selection and bug

prediction. Numerous feature selection algorithms to

envisage buggy software modules for a hugeheritage

communications software offered by Gao et al.

Numerous feature selection algorithms to envisage buggy

software units for a huge legacy communications software

offered by Gao et al. There are two methods used. First,
filter based techniques and second, subset selection search

algorithm.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 431

4. SYSTEM OVERVIEW

Fig -1: System Overview of bug prediction system

Above diagram fig 1. Shows general overview of the

system. Originally, user login/register into the system. It

also encompasses training data/raw data which retains the

logs or history. Then it checks for bug. If bug present in the

system verify and report bug. Then, cos-triage algorithm is

applied on that bug. Cos-triage algorithm supports us for

fixing bug or defects. Then at the back end that output with

bug is used as input to support vector machine (SVM)

classifier .SVM classifier uses different feature selection

methods which is given above. After that by reducing the
features we gets final output without bug. SVM classifier

operate on skilled data/raw data which is kept in log record.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 432

5. SCREENSHOTS

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 433

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 434

6. GRAPHICAL REPRESENTATION

Fig 2.Graphical representation of bug prediction on projects

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 435

Fig.3: Cos-triage algorithm graph

7. CONCLUSION

This paper has explored algorithm called Cos-triage

algorithm which helps to reduce cost and increase accuracy

of bug fixing or bug prediction. In this paper we used

feature selection method which reduces the quantity of

structures used by a support vector device classifier and

naive byes for bug prediction.

Henceforward, the usage of classifiers with feature selection

will approve fast, correct, more accurate bug predictions, if

software designers have highly developed bug prediction

methods rooted into their software development
environment. Similarly, many algorithm will build in future

which will increase accuracy of bug prediction.

REFERENCES

[1] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy,

“Predicting Fault Incidence Using Software Change

History,” IEEE Trans. Software Eng., vol. 26, no. 7,

pp. 653-661, July 2000.

[2] S. Kim, E. W. Jr., and Y. Zhang, “Classifying

Software Changes: Clean or Buggy?” IEEE Trans.

Software Eng., vol. 34, no. 2, pp. 181–196,2008.

[3] A.Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S.

Hallem, C.Henri-Gros, A. Kamsky, S. McPeak, and
D.R. Engler, “A Few Billion Lines of Code Later:

Using Static Analysis to Find Bugs in the Real

World,” Comm. ACM, vol. 53, no. 2, pp. 66-75,

2010.

[4] J. Madhavan and E. Whitehead Jr., “Predicting

Buggy Changes Inside an Integrated Development

Environment,” Proc. OOPSLA Workshop Eclipse

Technology eXchange, 2007.

[5] T. Khoshgoftaar and E. Allen, “Predicting the Order

of Fault-Prone Modules in Legacy Software,” Proc.

1998 Int’l Symp. on SoftwareReliability Eng., pp.
344–353, 1998.

[6] R. Kumar, S. Rai, and J. Trahan, “Neural-Network

Techniques for Software-Quality Evaluation,”

Reliability and Maintainability Symposium,1998.

[7] T. Ostrand, E. Weyuker, and R. Bell, “Predicting the

Location and Number of Faults in Large Software

Systems,” IEEE Trans. SoftwareEng., vol. 31, no. 4,

pp. 340–355, 2005.

[8] A.Hassan and R. Holt, “The Top Ten List: Dynamic

Fault Prediction,”Proc. ICSM’05, Jan 2005.

[9] R. Moser, W. Pedrycz, and G. Succi, “A Comparative
Analysis ofthe Efficiency of Change Metrics and

Static Code Attributes for Defect Prediction,” Proc.

30th Int’l Conf. Software Eng., pp. 181-190,2008..

[10] L.C. Briand, W.L. Melo, and J. Wu¨ st, “Assessing

the Applicability of Fault-Proneness Models Across

Object-Oriented Software Projects,” IEEE Trans.

Software Eng., vol. 28, no. 7, pp. 706-720,July 2002.

[11] M. Hall and G. Holmes, “Benchmarking Attribute

Selection Techniques for Discrete Class Data

Mining,” IEEE Trans. Knowledge and Data Eng., vol.

15, no. 6, pp. 1437-1447, Nov./Dec. 2003.

[12] J. Quinlan, C4.5: Programs for Machine Learning.
Morgan Kaufmann,1993.

[13] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A

General Software Defect-Proneness Prediction

Framework,” IEEE Trans. Software Eng., vol. 37, no.

3, pp. 356-370, May/June 2011.

[14] K. Gao, T. Khoshgoftaar, H. Wang, and N. Seliya,

“Choosing Software Metrics for Defect Prediction:

An Investigation on Feature Selection Techniques,”

Software: Practice and Experience,vol. 41, no. 5, pp.

579-606, 2011.

[15] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S.
Hallem, C.Henri-Gros, A. Kamsky, S. McPeak, and

D.R. Engler, “A FewBillion Lines of Code Later:

Using Static Analysis to Find Bugs in the Real

World,” Comm. ACM, vol. 53, no. 2, pp. 66-75, 2010

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 436

BIOGRAPHIES

Miss Veena jadhav M.tech (Computer)

BVDUCOE,

Pune

Prof.Vandana Gaikwad, Assistant Professor, Computer

department, BVDUCOE, Pune

Prof.Netra Patil, Assistant Professor, Computer department

BVDUCOE, Pune

