
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 299

CACHE MECHANISM TO AVOID DULPICATION OF SAME THING IN

HADOOP SYSTEM TO SPEED UP THE EXTENSION

Ritu A.Mundada
1
, Aakash.A.Waghmare

2

1
M. E Student, Department of Computer Science, Ssbt College, Jalgaon, India

2
Associate Professor, Department of Computer Science, Ssbt College, Jalgaon, India

Abstract
Cloud computing provides a proper platform for hosting large-scale data-intensive applications. MapReduce is a programming

model as well as a framework that supports the model. The main idea of the MapReduce model is to hide details of parallel

execution and allow users to focus only on data processing strategies. Hadoop is an open-source implementation for MapReduce.

For storage and analysis of online or streaming data which is big in size. Most organization are moving toward Apaches Hadoop

HDFS. Applications like log processors, search engines etc. ueses hadoop Map reduce for computing and HDFS for storage.
Hadoop is popular for analysis, storage and processing of very large data but require to make changes in hadoop system. There is

no mechanism to identify duplicate computations which increase processing time and unnecessary data transmission .To co-locate

related files by considering content and using locality sensitive hashing algorithm. By storing related files in same cluster using

cache mechanism which improve data locality mechanism and avoids repeated execution of task, both helps to speed up execution

of hadoop.

Keywords-Distributed file system, Datanode, Locality Sensitive Hashing

---***---

1. INTRODUCTION

In present scenario with the internet of things a lot of data is

generated and is analyzed mainly for business intelligence.

There are various sources of Big Data like social networking

sites, sensors, transactional data from enterprise

applications/databases, mobile devices, machine generated

data, huge amount of data generated from high definition

videos and many more sources. Some of the sources of this

data have vital value that is helpful for businesses to

develop. Hadoop is a distributed computing platform written

in Java which incorporates features similar to those of the

Google File System and MapReduce programming

paradigm. Apaches Hadoop is open source implementation
of Google Map/Reduce framework, it enables data intensive,

distributed and parallel applications by diving massive job

into smaller tasks and massive data sets into smaller

partition such that each task processes a different partition in

parallel. Map tasks that process the partitioned data set using

key/value pairs and generate some intermediate result.

Reduce tasks merged all intermediate values associated with

keys. Hadoop uses Hadoop Distributed File System (HDFS)

which is distributed file system, used for storing large data

files. Each file is divided into numbers of blocks and

replicated for fault tolerance. HDFS cluster is based on
master/slave architecture. Name Node work as master which

manages and store the file system namespace and provide

access to the client. The slaves are number of Data Nodes.

HDFS provides a file system name space and allows user

data to be stored in files. File is divided into number of

block; size of block is normally 64MB which is too large.

The default placement of Hadoop does not consider any data

characteristics during placement. If related files are kept in

same set of data nodes, the access latency and efficiency

will be increased. The file similarity will be calculated by

comparing content of it and to reduce comparison, a

Locality Sensitive Hashing will be used. Hash function hash

the points using different hash function in such way that

probability of collision will be higher for similar points.

Client is controlling overall process and providing sub-

clusterid where file will be placed otherwise default

placement strategy is used. Data aware cache is introduced

for avoiding execution of repeated task, which requires each

data object indexed by its content and also implement cache

request and reply protocol.

In section II we discuss in more about some basic types of

schedulers used in Hadoop and scheduler improvements.

Further section III talks about related work. section IV

actual mechanisms of cache. Finally section V concludes the

paper after which references follow.

2. SCHEDULING IN HADOOP

The default Scheduling algorithm is based on FIFO where

jobs were executed in the order of their submission. Later on

the ability to set the priority of a Job was added. Facebook

and Yahoo contributed significant work in developing

schedulers i.e. Fair Scheduler and Capacity Scheduler
respectively which subsequently released to Hadoop

Community.

2.1 Default FIFO Scheduler

The default Hadoop scheduler operates using a FIFO queue.

After a job is partitioned into individual tasks, they are

loaded into the queue and assigned to free slots as they

become available on TaskTracker nodes. Although there is

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 300

support for assignment of priorities to jobs, this is not turned

on by default. Typically each job would use the whole

cluster, so jobs had to wait for their turn. Even though a

shared cluster offers great potential for offering large

resources to many users, the problem of sharing resources

fairly between users requires a better scheduler. Production
jobs need to complete in a timely manner, while allowing

users who are making smaller ad hoc queries to get results

back in a reasonable time.

2.2 Fair Scheduler

The Fair Scheduler was developed at Facebook to manage

access to their Hadoop cluster and subsequently released to

the Hadoop community. The Fair Scheduler aims to give

every user a fair share of the cluster capacity over time.

Users may assign jobs

to pools, with each pool allocated a guaranteed minimum

number of Map and Reduce slots. Free slots in idle pools
may be allocated to other pools, while excess capacity

within a pool is shared among jobs. The Fair Scheduler

supports preemption, so if a pool has not received its fair

share for a certain period of time, then the scheduler will kill

tasks in pools running over capacity in order to give the slots

to the pool running under capacity. In addition,

administrators may enforce priority settings on certain

pools. Tasks are therefore scheduled in an interleaved

manner, based on their priority within their pool, and the

cluster capacity and usage of their pool. As jobs have their

tasks allocated to Task Tracker slots for computation, the
scheduler tracks the deficit between the amount of time

actually used and the ideal fair allocation for that job.

2.3 Capacity Scheduler

Capacity Scheduler originally developed at Yahoo addresses

a usage scenario where the number of users is large, and

there is a need to ensure a fair allocation of computation

resources amongst users. The Capacity Scheduler allocates

jobs based on the submitting user to queues with

configurable numbers of Map and Reduce slots. Queues that

contain jobs are given their configured capacity, while free

capacity in a queue is shared among other queues. Within a

queue, scheduling operates on a modified priority queue
basis with specific user limits, with priorities adjusted based

on the time a job was submitted, and the priority setting

allocated to that user and class of job. When a Task Tracker

slot becomes free, the queue with the lowest load is chosen,

from which the oldest remaining job is chosen. A task is

then scheduled from that job. Overall, this has the effect of

enforcing cluster capacity sharing among users, rather than

among jobs, as was the case in the Fair Scheduler.

2.4 Delay Scheduling

Fair scheduler is developed to allocate fair share of capacity

to all the users. Two locality problems identified when fair

sharing is followed are – head-of-line scheduling and sticky
slots. The first locality problem occurs in small jobs (jobs

that have small input files and hence have a small number of

data blocks to read). The problem is that whenever a job

reaches the head of the sorted list for scheduling, one of its

tasks is launched on the next slot that becomes free

irrespective of which node this slot is on. If the head-of-line

job is small, it is unlikely to have data locally on the node

that is given to it. Head-of-line scheduling problem was
observed at Facebook in a version of HFS without delay

scheduling. The other locality problem, sticky slots, is that

there is a tendency for a job to be assigned the same slot

repeatedly. The problems aroused because following a strict

queuing order forces a job with no local data to be

scheduled.

2.5 Dynamic Priority Scheduling

Thomas Sandholm et al .proposed Dynamic Priority

Scheduler that supports capacity distribution dynamically

among concurrent users based on priorities of the users.

Automated capacity allocation and redistribution is

supported in a regulated task slot resource market. This
approach allows users to get Map or Reduce slot on a

proportional share basis per time unit. These time slots can

be configured and called as allocation interval. It is typically

set to somewhere between 10 seconds and 1 minute. For

example a max capacity of 15 Map slots gets allocated

proportionally to three users. The central scheduler contains

a Dynamic Priority Allocator and a Priority Enforcer

component responsible for accounting and schedule

enforcement respectively. This model appears to favor users

with small jobs than users with bigger jobs. However

Hadoop MapReduce supports scaling down of big jobs to
small jobs to make sure that fewer concurrent tasks runs by

consuming the same amount of resources.

3. RELATED WORK

Performance of Hadoop system will be improved if related

files are placed in similar set of nodes. Considering past

work some techniques are used which provides some degree

of colocation but needs lots of changes in framework.

Colocating related file in HDFS, Co-Hadoop[1],provides

solution, which helps the application to control data

placement at file system level.

Considering this ADAPT[3], works to achieve high
reliability without need of additional data replication facility

. Based on availability of host ADAPT distribute data blocks

dynamically which improves data locality and reduces

network traffic. ADAPT guarantees that all host finishes

processing of their allocated job at same time which

improve execution time. When there are large numbers of

small files, each having less than size of block size of HDFS

then that file size become block size.

DARE[2]Adaptive DataReplication for Efficient Cluster

Scheduling .DARE improves data locality without network

overhead but requirementof storage is very high.

Down analyzes the performance of widely used hadoop

schedulers including FIFO and Fair sharing and compares

them with the COSHH (Classi_cation and Optimization

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 301

based Scheduler for Heterogeneous Hadoop) scheduler. The

scheduler is a combination of the three analyzed algorithms.

The selector chooses an appropriate scheduler as the number

of jobs and resources scale up or down. However, the

overall solution is to use the COSHH algorithm when the

system is overloaded (e.g., during peak hours), the FIFO
algorithm for under loaded systems (e.g., after hours), and

the Fair Sharing algorithm when the system load is

balanced. A combination of the FIFO, Fair Sharing, and

COSHH schedulers is e_ective, where the selection is based

on the load on the system and available system resources. A

job scheduler is an essential component of every hadoop

system.

4. PROPOSED SOLUTION

Data is everywhere now. The amount of information

available now is very huge for analysis, storage and process

such huge information Apaches Hadoop tool is much

popular. Hadoop uses HDFS for storage and MapReduce for
analysis. If default placement of Hadoop is considered then

it places file anywhere in cluster. Hadoop is uses principal

of data locality means tasks are executed where data are

placed but in practices this will not be true for all data files.

If needed files are placed on different nodes then that files

need to be copied to worker node for task execution. But

when placing files data characteristics are considered then

related files are stored in same node which improve data

locality and reduce network traffic. MapReduce does not

have any mechanism to find whether task is executed before

so that result can be re used but result of executed task is not
stored so if task is executed again then there is no

mechanism is available to find task and reuse the result. The

purpose of the experiment is to extend Hadoop system by

improving the data placement and execution policies of

Map/Reduce. The file similarity will be calculated based on

its content and similar file will be placed in same data node

or nearby data nodes (sub- cluster). The result of

Map/Reduce will be stored in cache as framework to access

them again if same task is executed on same data repeatedly.

To find cluster client executes following modules:

1. Preprocessing File: File contain collection of words,

file is pre-process means words like stop words are

removed, stop word are word like ‘a ’, ‘of ’, ‘the’ etc.

and also stemming (historical is replace with history)

and many techniques are used to pre-process a file.

After preprocessing file will contain collection of

word which related to particular file and which can be

use to represent that file.

2. File Vector: after preprocessing file which contains

collection of words from that words which are

presenting that file need to find, this is done using
TFIDF technique. TFIDF(Term Frequencies-Inverse

Document Frequencies) technique finds words in file

that come many times compare to all remaining files,

which indicate that word is representinga file and it is

important word in file. If word is representing that

file then that word can be use to find similar files.

3. Create Signature - To find similar file it should be

compared with content of each and every files

available but there are millions of files which makes

process time consuming. So to make process faster

compact bit representation of each file vector is

created, Signature. To create Signature f bit vector is

used and this vector initialized to zero first then it
hashed with file vector and comparing value is 0 or 1

weight of word will be incremented or decremented.

Advantage of Signature is that similar file will have

same Signature which makes process faster.

4. Use Locality Sensitive Hashing to find nearest

neighbor- In large clustering environment to compare

file Signature to each and every cluster is time

consuming to avoid comparing each and every cluster

locality sensitive hashing technique is used which

ensures that only nearest neighbour need to be

checked to place file. For this hashing function is
used which query file Signature to find nearest

neighbour and m number of neighbour is returned to

client.

5. Store file with related files- If m neighbour is return

to client then only that m neighbour will be compared

and after finding cluster where file will be placed, this

subclusterid will be given to Name Node. Name

Node maintains subclustertable which store

subclusterid and file placed on that cluster. If Name

Node finds entry then that file will be placed on

subclusterid but if subclusterid is not found then new

subcluster will be created, file will be stored on newly
created cluster and file and cluster Signature will be

calculated and this information will be updated to

subcluster table.Now suppose client want execute

map task and system should not execute repeated map

task for this, cache will be implemented. Cache table

will be created which stores file name, operation

perform on that file and result file name.

1. Map task execution: when client wants to

execute any map task first then it request cache

manager to find file name and operation. If file
name and operation performed on that file is

same then result file name will be given to

directly to reduce phase which completely save

execution time of task.

2. Lifetime of cache item fixed size cache will be

used and if cache is full then older entry will be

deleted.

The project requires various data structure to perform

various modules in proposed system which is listed below:

Data structure for locality sensitive hashing function, Data

structure for SubCT, Data structure for storing mapping
information, Data Structure for CacheTable, Data Structure

for storing intermediate result. All above structure will be

either array of structure or linked list or object of classes.

The internal data structures will be used to store result

obtained by map task it need to store locally because it

improves data locality. The data structure to create mapping

information at client will contain 1) clusterid, 2) Signature

of cluster ids 3) cluster centroids 4) file name 5) Signature

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 302

of file. The data structure require to store hash table at client

side which store cluster Signature as key and cluster

information as value. The global data structures use for

maintaining Subclusterid table for indexing of Sub-cluster id

and file which is having same subclusterid. etc. The

structure of Sub-cluster is as follow:

Table 1 Sub-Cluster Table

Sub Clusterid Files

1 A,B

2 C

N 0

The data structures will be structure used to data structure to

create CacheTable will contain 1) name of file, 2) type of

operation performed on file 3) result file name.

5. CONCLUSION

“Speedup extension to Hadoop system” is the modification

in the input format and task management of the map reduce

framework. The applications, using this modified Hadoop

need not to change at all. The proposed system shows that it

can eliminate all the duplicate tasks and new approach for

incremental file clustering is proposed for HDFS which will
cluster similar files in the same set of data nodes with

minimal changes to the existing framework. For faster

clustering operations bit wise representation of the feature

vectors called Signature are used. To reduce the number of

cluster centroid comparisons, only the nearest neighbours

are considered using the technique of Locality Sensitive

Hashing. In this experiment two modules are combined first

is data placement modified with clustering and second is

map/reduce tasks execution time is reduce and processing is

done faster. So this experiment speeds up hadoop system by

changing data placement and task execution.

REFERENCES

[1] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao,

“RCFile: A fast and space-efficient data placement

structure in MapReduce-based warehouse systems,”

Data Engineering (ICDE), 2011 IEEE 27th

International Conference on , vol., no., pp.1199,1208,

11-16 ,April 2011.

[2] Abad, C.L., Yi Lu, Campbell, R.H.,

“DARE:Adaptive Data Replication for Efficient

ClusterScheduling,” Cluster Computing (CLUSTER),

2011IEEE International Conference on , vol., no.,

pp.159,168, 26-30 Sept. 2011.
[3] Hui Jin; Xi Yang; Xian-He Sun; Raicu, I., “ADAPT:

Availability-Aware MapReduce Data Placement for

Non-dedicated DistributedComputing,” Distributed

Computing Systems(ICDCS), 2012 IEEE 32nd

International Conference on , vol., no., pp.516,525,

18-21 June 2012.

[4] Shvachko, K.; Hairong Kuang; Radia, S.; Chansler,

R., “The Hadoop Distributed File System,”Mass

Storage Systems and Technologies (MSST), 2010

IEEE 26th Symposium on , vol., no., pp.1,10, 3-7

May 2010.

[5] Kala Karun,‘‘A review on hadoop HDFS

infrastructure extensions,”Information and

Communication Technologies (ICT), 2013 IEEE

Conference on , vol., no., pp.132,137, 11-12 April

2013.

[6] Kala, K.A., Chitharanjan,‘‘Locality Sensitive
Hashing based incremental clustering for creating

affinity groups in Hadoop HDFS – An infrastructure

extension,”Circuits, Power and

ComputingTechnologies (ICCPCT), 2013

International Conference on , vol., no., pp.1243,1249,

20-21 ,March 2013.

[7] Yaxiong Zhao, Jie Wu, ‘‘Dache: A data aware

caching for big-data applications using the Map

Reduce framework,” INFOCOM, 2013 Proceedings

IEEE , vol., no., pp.35,39, 14-19 April 2013.

[8] Hui Jin; Xi Yang; Xian-He Sun;,‘‘ADAPT:
Availability-Aware MapReduce Data Placement for

Non-dedicated Distributed Computing,”

DistributedComputing Systems (ICDCS), 2012 IEEE

32nd International Conference on , vol., no.,

pp.516,525, 18-21 June 2012

