
IJRET: International Journal of Research in Engineering and Technology eISSN:2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 264

A UNIQUE SORTING ALGORITHM WITH LINEAR TIME & SPACE

COMPLEXITY

Sanjib Palui
1
, Somsubhra Gupta

2

1
PLP, CVPR Unit, Indian Statistical Institute, WB, India

2
HOD, Information Technology, JISCE, WB, India

Abstract
Sorting a list means selection of the particular permutation of the members of that list in which the final permutation contains

members in increasing or in decreasing order. Sorted list is prerequisite of some optimized operations such as searching an

element from a list, locating or removing an element to/ from a list and merging two sorted list in a database etc. As volume of

information is growing up day by day in the world around us and these data are unavoidable to manage for real life situations,

the efficient and cost effective sorting algorithms are required. There are several numbers of fundamental and problem oriented
sorting algorithms but still now sorting a problem has attracted a great deal of research, perhaps due to the complexity of solving

it efficiently and effectively despite of its simple and familiar statements.

Algorithms having same efficiency to do a same work using different mechanisms must differ their required time and space. For

that reason an algorithm is chosen according to one’s need with respect to space complexity and time complexity. Now a day,

space (Memory) is available in market comparatively in cheap cost. So, time complexity is a major issue for an algorithm. Here,

the presented approach is to sort a list with linear time and space complexity using divide and conquer rule by partitioning a

problem into n (input size) number of sub problems then these sub problems are solved recursively. Required time and space for

the algorithm is optimized through reducing the height of the recursive tree and reduced height is too small (as compared to the

problem size) to evaluate. So, asymptotic efficiency of this algorithm is very high with respect to time and space.

Keywords: sorting, searching, permutation, divide and conquer algorithm, asymptotic efficiency, space complexity,

time complexity, and recursion.

--***--

1. INTRODUCTION

An algorithm [1] [2] [3] [6] [7] is a finite set of instructions,

that if followed, accomplish a particular task. Algorithm

must satisfy some characteristic like having input, output,

definiteness, finiteness, effectiveness.

Sorting [2] [5] [8] a list means a particular permutation of a

given sequence in which the elements of the sequence are
arranged in increasing/decreasing order. Sorting algorithms

used in computer science are often classified by:

 Computational complexity [5] [9] [10] (worst, average

and best behavior) of element comparisons in terms of

the size of the list.

 Computational complexity of swaps (for "in place"

algorithms) are sometimes characterized in terms of

the performances that the algorithms yield and the

amount of time that the algorithms take.

 Requirements of memory [11] [12] and other computer

resources.

 Recursion [13]. Some algorithms are either recursive

or non-recursive, while others may be both.

 Stability: stable sorting algorithms maintain the

relative order of records with equal keys i.e. values.

 Whether or not they are a comparison sort. A

comparison sort examines the data only by comparing

two elements with a comparison operator.

 General method: insertion, exchange, selection,

merging, etc.

 Adaptability: Whether or not the pre-sortedness of the

input affects the running time. Algorithms that take

this into account are known to be adaptive.

Now a day there are many effective sorting algorithms.

Although lots of researchers are working on this, but unlike

other field of research, number of proposed new, innovative

and cost effective work is very few in the field of sorting

algorithm.

We have designed and applied one sorting algorithm to

achieve linear time complexity. In this paper, this new

algorithm is proposed. As compared to existing algorithm, it

gives better result and also it has linear time and space

complexity, we named this work of algorithm as --“A

Unique Sorting Algorithm with Linear Time & Space
Complexity”.

Here, our work is organized as follows: PREVIOUS

RELATED WORKS is given in section 2, ALGORITHM

OF PROPOSED WORK is in section 3, ANALYSIS OF

THE ALGORITHM is in section 4, and finally conclusion is

given on section 5 and then REFERENCEs.

IJRET: International Journal of Research in Engineering and Technology eISSN:2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 265

2. PREVIOUS RELATED WORKS

Some well known sorting algorithm are bubble sort,

selection sort, insertion sort ,merge sort, quick sort ,heap

sort ,radix sort , cocktail sort ,shell sort etc. All these

algorithms can be classified according to their average case

and worst case time complexity (asymptotic complexity-big

theta notation-θ and big oh notation – O respectively). Time
complexity of some algorithms are given in Table 1 along

with the stability of these algorithms i.e. they are stable or

not. Here (with respect to the Table 1) n is the input size of

the list to be sorted, d is number of digit in the largest

number among inputs and k is all possible digit/word (for

example- k=10 as decimal).

Some comparative study [11] [14] [15] [16] have been

carried out in this field and situations of better suitemate for

these algorithms (Table 1) are clearly notified. Depend on

applications or data structure, which among sorting

algorithm or modified version of an existing algorithm has
less complexity than the original one or which among these

algorithms is the best fitted in a particular circumstances are

drawn on some proposed approach [17] [18] [19] [20].

Table -1: Information about Some algorithms

Name of the

Algorithm

Time Complexity Stable?

Average case Worst Case

Bubble sort Θ(n2) O(n2) Yes

Selection sort Θ(n2) O(n2) No

Insertion sort Θ(n2) O(n2) Yes

Merge sort Θ(n log2 n) O(n log2 n) Yes

Quick sort Θ(n log2 n) O(n2) No

Bucket sort Θ(d(n+k)) O(n2) Yes

Heap sort Θ(n log2 n) O(n log2 n) No

Depending on inputs and some predefined conditions, some

new algorithms [18] [21] [22] have been projected to

achieve better complexity. Some algorithm is designed for

linear complexity [23] [24] but they can be executed in the

system platform having some special characteristics as these

algorithms demand for that. Poll sort, simple pancake sort,
bead sort are the example of this type of sorting algorithms.

Pancake sorting algorithm is not stable but has linear time

complexity. Bead sort algorithm requires special hardware

design to execute. Poll sort algorithm takes linear-time to

execute but it is an analog algorithm for sorting a sequence

of items, requiring O(n) stack space, and the sorting

algorithm is stable but n (number of elements in input list)

parallel processors are required.

There is an algorithm called Randomized Select [24] [25]

algorithm for sorting. The expected running time of this

algorithm is θ (n); a linear asymptotic running time where n
is the input size of the problem. This algorithm works like

Randomized Quick-sort [26] (where pivot element is select

randomly from the list).Two main constraint of this

algorithm

 All the elements in the input sub-problem are

distinct.

 Partition is done based on random selection of an

element.

Complexities of algorithms are strictly dependent on input

size, caches performance etc., briefly description about

complexities of algorithms are given some of the noble work
[28] [29] [30].

3. ALGORITHM OF PROPOSED WORK

The pseudo-code of our work, --“A Unique Sorting

Algorithm with Linear Time & Space Complexity” is given

below

Sort (A, lb, ub)

Here A is a 1-D input list of decimal integer with n elements

in memory where n=ub-lb+1 and ub=upper bound, lb=lower

bound of the list.

Begin

1. if (lb<ub) then,

2. find min and max
3. if (min!=max) then,

4. set n = ub-lb+1

5. create n number of empty List

6. set div = (max - min) /n +1

7. for i=lb to ub by 1do,

8. j= (A[i] - min)/div

9. add A[i] to the jth List

10. end for

11. set k = lb

12. for i =0 to n by 1 do,

13. set l = k
14. set size =number of elements in ith List

15. for j =0 to size by 1 do,

16. A [k]= jth element of ith List

17. set k = k +1

18. end for

19. If ((l <k-1) && (! ((l = = lb)&&(k = = ub))))

20. call sort(A, l, k -1)

21. end if

22. end for

23. end if

24. end if

End

Algorithm1.

min and max in line number 2 in Algorithm1 are minimum

and maximum number from the list respectively. Here we

have designed one variable for every “sort (x, y, z)” function

call, called div which plays major role in the above

mentioned pseudo code of the designed sorting algorithm.
Every element of the input list forms its own index as it will

be in the output list with the help of div variable[line

number 8 of Algorithm1].Then all the elements of the input

list with same indexes (as it is generated in line number 8 of

Algorithm1) are solved as sub problems[27]. Elements with

same index are treated here as one sub problem. For

increasing order output----

IJRET: International Journal of Research in Engineering and Technology eISSN:2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 266

 Every sub problem (except left most) as single unit

has all smaller elements from the input list in its left.

 Every sub problem (except right most) as single unit

has all larger elements from the input list in its right.

 Every sub problem can have 0 to n-1 elements.

 If number of elements in one sub problem is one it

takes unit time cost to sort.

 Ideally list with n elements are partitioned in to n sub

problems each of which have one element.

 It takes linear time complexity, O (n).

 Relative positions of two elements having same value

are not changed, so this algorithm is stable.

All other strategies that are followed to execute this

algorithm properly and efficiently-

 If the input list is combination of positive and
negative integers, then two list are formed i.e. one list

for negative numbers and another list for positive

numbers. Then all the elements of the list of negative

numbers are made positive. After performing

algorithmic operations to make them as sorted, sign

of elements are changed again and the list is reversed.

Then operations are performed on positive list. At

last, these two lists are concatenated.

 If the numbers are real, this algorithm can be applied

easily. Problem is divided into sub problems

according to their absolute value and if absolute

values are same for all elements then partition is done
based on their precision value.

4. ANALYSIS OF THE ALGORITHM

From the number statistics if the numbers are in uniform

distribution then almost no recursions are happened,

otherwise after first partition of the array, it will make

greater than or equal to two uniform distributed array where

complexity is linearly dependant on n. Here, after partition

of the array some input elements are taken place in the array

like in quick sort one element is fixed in exact position.

Here number of fixed elements is 1 to n where n is the

number of elements to be sorted.

4.1 Time Complexity

Asymptotic time complexities [3] [4] of this algorithm in

different cases are described here-

4.1.1 Best Case

If the elements are uniform distributed, then ideally

problems are divided in to n sub problems. So no recursive

call is executed because almost each sub problem has one

element.

So, the required time is

T (n) =c +T(1)+T(1)+T(1)+T(1)…………n times

 ≡c + O (n) where c=constant time
 ≡ O (n) as n is very large

4.1.2 Average Case

If number of elements n becomes very high, in first function

call, divided sub-problems will be almost uniformly

distributed. Let, here recursive call is happened m times

where (m<n) and sub-problems have n1, n2… nm elements

respectively.

So, n1+n2+…..+nm +p= n ---- Eq. (1)

where p is the number of elements that are already taken

place in the input list as sorted elements. So, time

complexity is

 T(n)=c.n+ T(n1)+T(n2)+……+T(nm)

Where

 c=constant time

 =c. n+ c.n1 +c.n2+ ……+c.nm

[From the best case as the sub problems are uniform

distributed of , ,…, elements, there is rare chance for

every sub problem to give average case time complexity]

 = c. n+ c. (+ +……+)
 =c. n+ c. n [from, Eq. (1)]

 =2cn

 ≡O(n)

4.1.3 Worst Case

The algorithm gives worst case time complexity when,

 Inputs elements are randomly distributed.

 All elements except the largest one of the input list

have values less than the value of div as it is

generated in line number 6 in our algorithm1 and it is

happen again and again for every sub problem.

 The input series is one of all possible permutation of

the elements of the series-----

a, i*(i-1)th term +c ∀ i=2 to n - --Eq.(2)

where a=starting element of this series and having a
positive value and c > = 0.

4.1.3.1 Case-I

According to the proposed algorithm, at that situation, time

complexity is

T(n)=c .n+ T(n-1)

 ≡O(n2)

which is possible theoretically but not in real life because

we are talking about asymptotic time complexity. So,

number of input elements is very very high. Every real life

database collects and stores similar kinds of data and it is a
very rare chance that at least some of elements in the sorted

output series satisfy Eq. (2).

So, for every real life problem this algorithm gives average

case time complexity.

IJRET: International Journal of Research in Engineering and Technology eISSN:2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 267

4.1.3.2 Case-II

Depend on that situation of the worst case we have added

some more instruction with the original above mentioned

algorithm (i.e. Algorithm1) in between line number 3 and

line number 4.

 Second largest number is found out along with the

largest number.

 Checking is done according to the series of Eq. (2).

If match then max (variable of the algorithm1) is

set to second largest number instead of the largest

number.

After this, it is seen that the problem is partitioned at least in

to three sub problems. It is empirically designed in such a

way that time complexity of the worst case for this

algorithm become .

4.2 Space Complexity

Space complexities [4] [8] in different cases are fully

dependent on number of times the subroutine (as described

in Algorithm1) is called recursively and input size for that

sub-problem for which this subroutine is called.

When input size is n ,this algorithm needs more memory for

the n numbers of list which are initially empty and store the

elements of same index in the time of inputs being

processed (from Algorithm1-line number 5 and line

number 9). Now total number of elements in the n numbers

of list is n.

So, required memory unit for every subroutine call is

 n (for input elements) +n (for index lists)+c

 = 2*n +c

Where c = memory unit for other variables

So, asymptotic space complexity is also linearly dependent

on input size as this algorithm is implemented to reduce the

depth of recursion tree.

Complexity and stability details of presented algorithm are
in Table-2---

Table -2: Information about Presented algorithm

Time Complexity Space

Complexity

Stable?

Best Case O(n)

Same as

time

complexity

Yes

Average

Case

O(n)

Worst

Case
 O(n2) or

Only for Eq.(2)

 O(n)

Some experimental results with respect to input sizes and

required times of this algorithm are given in Table-3 as

compared to the results of some other well known

algorithms where computer environment, paradigm, inputs

are same.

Table -3: Experiment Results

Input

Size

Required Time in Millisecond

Bubbl

e Sort

Selectio

n Sort

Insertio

n Sort

Merg

e Sort

Proposed

Approac

h

15000 1248 442 328 7 7

30000 4863 1746 1325 22 13

60000 19904 7056 6883 71 25

90000 43550 15750 14921 150 27

12000

0

76099 28917 25132 265 36

15000

0

12241

6

44925 38081 394 45

5. CONCLUSIONS

This presented algorithm is implemented successfully

through a repeatable task of design, carrying out and

analyze. The advantages of this algorithm are its speed,

requirement of less memory than existing one and stability.

Selection of sorting algorithm is application and situation

dependent but this algorithm works well in every field. For

real life sorting problem, time complexity & space

complexity of this algorithm are linear.

There is a broad future scope to experiment the proposed

algorithm for finding out short-coming (if any) based on

some uncovered real life test suits with solutions.

REFERENCES

[1]. D.E. Kunth, Fundamental Algorithms, The Art of

Computer Programming: Vol.1, Addison-Wesley, 1968.

Third Edition, 1997.

[2]. D.E. Kunth, Sorting and Searching, The Art of

Computer Programming: Vol. 3, Addison-Wesley,

1973.Second Edition, 1998.

[3]. D.E. Kunth, Semi numerical Algorithms, The Art of

Computer Programming: Vol.2, Addison-Wesley, 1969.
Third Edition, 1997.

[4]. D.E. Kunth, Big omicron and big omega and big theta.

SIGACT News,8(2)18-23,1976.

[5]. Cormen T., Leiserson C., Rivest R., and Stein C.,

Introduction to Algorithm McGraw Hill, 2001.

[6]. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design

and Analysis of Computer Algorithms.Addison-

Wesley,1974.

[7]. A. V. Aho, J. E. Hopcroft and J. D. Ullman Data

Structures and Algorithms.Addison-Wesley,1983

[8]. A. Aggarwal and J. Scott Vitter.The input/output

Complexity of sorting and related problems.
Communication of the ACM, 31(9):1116-1127,1998.

[9]. S. Baase and A. V. Gelder. Computer Algorithm:

Introduction to Design and Analysis. Addison-Wesley,

Third edition,2000.

[10]. Lavore, Robert. Arrays, Big O Notation and Simple

Sorting. Data Structures and Algorithms in Java (2nd

Edition). Sams, 978-0-672-32453-6..

IJRET: International Journal of Research in Engineering and Technology eISSN:2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 11 | Nov-2014, Available @ http://www.ijret.org 268

[11]. A. Tridgell, Efficient Algorithms for Sorting and

Synchronization, Ph.D. Thesis, Dept. of Computer Science,

The Australian National University, 1999.

[12]. K. D. Cooper and L. Xu. An efficient static analysis

algorithm to detect redundant memory operations. In

Workshop on Memory Systems Performance (MSP ’02),
Berlin, Germany, June 2002.

[13]. M. Akra and L. Bazzi.On the solution of linear

recurrence equation. Computational Optimization and

Application,10(2):195-210,1998.

[14]. S. Jadoon, S. F. Solehria and M. Qayum, (2011)

“Optimized Selection Sort Algorithm is faster than

Insertion Sort Algorithm: a Comparative Study”

International Journal of Electrical & Computer Sciences,

IJECS-IJENS, Vol: 11 No: 02.

[15]. Y. Yang, P. Yu, Y. Gan, (2011) “Experimental Study

on the Five Sort Algorithms”, International Conference on
Mechanic Automation and Control Engineering (MACE).

[16]. V. Estivill-Castro and D. Wood. A survey of adaptive

sorting algorithms. ACM Computing Surveys, 24:441–476,

1992.

[17]. W. Min (2010) “Analysis on 2-Element Insertion Sort

Algorithm”, International Conference on Computer Design

And Appliations (ICCDA).

[18]. E. Kapur, P. Kumar and S. Gupta-“Proposal Of A Two

Way Sorting Algorithm And Performance Comparison With

Existing Algorithms”- International Journal of Computer

Science, Engineering and Applications (IJCSEA) Vol.2,

No.3, June 2012
[19]. M. Peczarski. New results in minimum-comparison

sorting. Algorithmica,40:133–145, 2004

[20]. J.-L. Lambert. Sorting the sums (xi +yj) in o(n2)

comparisons. Theoretical Computer Science, 103:137–141,

1992

[21]. S. Z. Iqbal, H. Gull, A. W. Muzaffar, (2009) “A New

Friends Sort Algorithm”,IEEE Second International

Conference on Computer Science and Information

Technology.

[22]. J.L. Bentley and R. Sedgewick, Fast Algorithms for

Sorting and Searching Strings, ACM-SIAM SODA”, pp.
360-369, 1997.

[23]. Box R. and Lacey S., A Fast Sort, Computer Journal of

Byte Magazine, vol. 16, no. 4, pp. 315-315, 1991.

[24]. C. A. Hoare. Algorithm 63 (PARTITION) and

algorithm 65 (FIND). Communications of the ACM, 4(7),

pp. 321-322, 1961.

[25]. R. W. Floyd and R.L. Rivest. Expected time bounds

for selection. Communications of the ACM, 18(3):pp. 165-

172, 1975.

[26]. M. D. McIlroy. A killer adversary for quicksort.

Software -Practice and Experience, 29(4):341-344, 1999.

[27]. J. L. Bentley, D. Haken and J. B. Saxe. A general
methods for solving divide and conquer recurrence.

SIGACT News,12(3):36-44,1980.

[28]. L. Trevisan, Lecture Notes on Computational

Complexity, Computer Science Division, U.C. Berkeley,

2002.

[29]. J. Hartmanis and R. E. Stearns, on the computational

complexity of algorithms,1963.

[30]. A. LaMarca and R. Ladner. The influence of caches on

the performance of sorting. J. Algorithms, 31:66–104, 1999.

BIOGRAPHIES

Sanjib Palui has completed his bachelor

degree in Information Technology and

master degree in Software Engineering
in the year of 2012 and 2014

respectively. Then he has joined Indian

Statistical Institute as Project Linked

Person in the unit of Computer Vision & Pattern

Recognition (CVPR). He is working on Data Structure &

algorithm, Image Processing and Optical Character

Recognition fields.

Dr. Somsubhra Gupta is presently the

Assistant Professor of the Department of

Information Technology, JIS College of

Engineering (An Autonomous
Institution). He is graduated from the

University of Calcutta and completed his Masters from

Indian Institute of Technology, Kharagpur. He received Ph.

D. award entitled “Multiobjective Decision Making in

Inexact Environment using Genetic Algorithm: Theory and

Applications” form University of Kalyani. His area of

teaching is Algorithm and allied domains and research area

is Machine Intelligence. In research, he has around 56

papers including Book Chapters so far in National /

International Journal / Proceedings and over 40 citations. He

is Principal Investigator / Project Coordinator to some
Research projects (viz. RPS scheme AICTE). He was the

Convener of International Conference on Computation and

Communication Advancement (IC3A-2013). He is invited in

the Technical Programme Committee of number of

Conferences, delivered as an invited speaker, an INS

(Elsevier Science) reviewer and attended NAFSA-2013

conference of international educators at St. Louis, Missouri,

USA

