
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 10 | Oct-2014, Available @ http://www.ijret.org 367

PARALLEL kNN ON GPU ARCHITECTURE USING OpenCL

V.B.Nikam
1
, B.B.Meshram

2

1
Associate Professor, Department of Computer Engineering and Information Technology, Jijabai Technological

Institute, Matunga, Mumbai, Maharashtra, India
2
Professor, Department of Computer Engineering and Information Technology, Veermata Jijabai Technological

Institute, Matunga, Mumbai, Maharashtra, India

Abstract
In data mining applications, one of the useful algorithms for classification is the kNN algorithm. The kNN search has a wide

usage in many research and industrial domains like 3-dimensional object rendering, content-based image retrieval, statistics,

biology (gene classification), etc. In spite of some improvements in the last decades, the computation time required by the kNN

search remains the bottleneck for kNN classification, especially in high dimensional spaces. This bottleneck has created the

necessity of the parallel kNN on commodity hardware. GPU and OpenCL architecture are the low cost high performance

solutions for parallelising the kNN classifier. In regard to this, we have designed, implemented our proposed parallel kNN model

to improve upon performance bottleneck issue of kNN algorithm.

In this paper, we have proposed parallel kNN algorithm on GPU and OpenCL framework. In our approach, we distributed the

distance computations of the data points among all GPU cores. Multiple threads invoked for each GPU core. We have
implemented and tested our parallel kNN implementation on UCI datasets. The experimental results show that the speedup of the

KNN algorithm is improved over the serial performance.

Keywords: kNN, GPU, CPU, Parallel Computing, Data Mining, Clustering Algorithm.

--***--

1. INTRODUCTION

In data mining, classification is the problem of identifying

set of categories/sub-populations from new observations;

based on a training dataset containing observations/instances
whose category membership known in advance. The data

mining algorithm performs classification is called classifier.

Classifier is a supervised learning category. In supervised

learning, input set of observations has an effect on output set

of observations; the model includes the mediating variables

between the input and output variables. kNN uses a

continuous data for building classification model. Being the

capability of handling large datasets for solving the big

problems, kNN has been widely accepted in research and

industry applications. Though, kNN has been accepted

widely; due to the large datasets, performance became the
performance bottleneck for the algorithm. kNN classifier is

an instance based learning (IBL) which follows case based

reasoning (CBR) approach to solve new problems. This

learning approach is a lazy learning. kNN classifier is the

most widely used classifier in the data mining domain, and

has been accepted for wide range and volume of datasets. A

new instance is classified as the most frequent class of its

‘K’ nearest neighbours.

OpenCL is a generic many core computing programming

framework used for parallelizing applications on the GPU’s

parallel architecture. OpenCL and GPU is most preferred for
parallelizing kNN. It is observed that, kNN is

embarrassingly parallel in nature and a good candidate for

parallelism. In this paper, we have explored the design and

experimental results of our parallel kNN on GPU and

OpenCL architecture. We have proposed, implemented and

tested OpenCL based parallel kNN algorithm on GPU
platform. We observed that, our proposed parallel kNN on

OpenCL & GPU platform performs well over the sequential

performance of kNN. In addition to the performance, the

accuracy of our proposed kNN algorithm is achieved to the

level of satisfaction.

This paper is organised as below: Section2 discusses the

literature survey on kNN classifier, related work in parallel

kNN algorithm, OpenCL and GPU technology. Section3

describes our methodology on OpenCL framework for

parallel kNN algorithm. Section4 discusses on result

analysis. We have observed the results for scaleup on
performance. Section5 is the conclusion of our work and

the paper.

2. LITERATURE SURVEY

The basic process of sequential kNN algorithm is as follows:

First, the data pre-processing phase is to initialize the

labelled dimensional training dataset as well as the test

dataset to be classified. Second, select one test point in the

test dataset and calculate the distances between it and each

point in the train dataset. The next phase is to sort the results

of distances computed, and find out ‘k’ smallest results. The

fourth step is to determine the class label of the test point by

the election result of ‘k’ points. Thus, selecting another
point in the test dataset and repeat the process to classify the

test dataset[5].

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Graphics_processing_unit

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 10 | Oct-2014, Available @ http://www.ijret.org 368

The pseudo-code for the sequential kNN algorithm is as

follows,

Algorithm: kNN

Input: Dataset, D = {(x1,c1), . . . , (xN,cN)},

Input query t = (x1, . . . ,xn), k- number of

neighbour.
Output: class ‘c’ to be identified for new instance of

dataset ‘t’

Begin

For each labelled instance (xi, ci)

calculate d(xi, x)

Order d(xi,x) from lowest to highest, (i = 1, . . . ,N)

Select ‘K’ nearest instances to x:

Assign to x the most frequent class in

End

If we have 4 test cases and 12 training points, then in

traditional algorithm we visit each training point 4 times and

will be perform total 48 serial operations. Thus, for ‘m’ test

cases, and ‘n’ training points there would be O(mn) time
complexity. The time complexity is very high if test cases

and training points become very large in volume. This has

created the need to parallelize operations for kNN algorithm.

The compute intensive operational part of kNN algorithm

taken up for the parallel and simultaneous operations, can

lead to reasonable reduction in compute time. The optimal

value for ‘k’ identified in the range of 3 to 10. In general,

large ‘k’ value is more precise as it reduces the overall

noise.

kNN has been used in statistical methodologies and pattern

recognition since beginning. ‘k’ nearest neighbours
measured by a distance function. Here we have used

Euclidian distance. The Euclidian distance measured

between two points, ‘a’ and ‘b’, is shown below in equation

(1).

d(a,b) =

 ...(1)

In addition to Euclidian distance, there are Manhattan

distance, Minkowski distance are also used for measuring
distances. These distance measures are only used for

continuous data variables, however, in case of categorical

variables the Hamming distance must be used. If there is

continuous and categorical variables exist in the dataset,

standardization of the numerical variables between 0 and 1

is done to achieve same type data values for the entire

dataset. This is also called as normalization of dataset.

2.1 OpenCL Framework

Due to tremendous computing power, General Purpose

computing on GPU (GPGPU) has been widely adopted by

the developers and researchers [7]. Khronos group has

proposed OpenCL (Open Computing Language) framework
for programming many core architecture [8]. OpenCL is an

open industry standard for general-purpose parallel

programming. OpenCL device ‘kernels’ contains

computation to be carried out in parallel. In order to achieve

parallel computation, many work-items, work groups, etc

the components of OpenCL data parallel execution model,

as shown in the 0, spawns on multiple data items [9].

Fig 1: Data parallel execution using OpenCL

The data parallelisation task happens through the work items

that executes in work-groups as shown in 0 For parallel

computing and performance, OpenCL memory hierarchy

has four types of device memories viz private, global,

constant and local memories. Efficient use of each of them

need to be done for high performance achievement [7][8].

2.2 Related Work on Parallel kNN

kNN is widely used classification algorithm and very

parallel friendly because of number of independent

operations. It is required to scan all the objects for any new

entry. It is known for lazy learning as all the time dataset

needs to be scanned. When training and test dataset size is
large, the speed will be quite slow which makes it the best

candidate to be processed in parallel. S. Liang , C. Wang, Y.

Liu and L. Jian (2009) have focused on parallelizing sorting

and distance calculation process due to high compute

intensiveness. Distances between the current object and all

the data set objects are calculated in parallel. They made two

kernels for the same. Sorting Kernel will find the rank of

particular object in data set.[1]. Q. Kuang and L. Zhao

(2009) proposed parallel scheme for processing testing data

set and training data set by dividing computation of result

data set. During distance calculation, result data-set is
divided into tiles and each tiles of width T is processed by

an independent block in parallel. Each block contains TxT

thread each of which calculates the single distance[2].

Garcia V. Debreuve E. Nielsen F. and Barlaud M. (2010)

suggested CUDA based and CUBLAS based approaches for

the parallelism of kNN. The approach except sorting is

almost similar to S. Liang et al[1] approach. CUBLAS

implementation proved high speed up [3] for performance.

G. Nolan proposed improved bubble sort on CUDA for kNN

process. they stated iterative version of bitonic sort used for

parallelisation[4]. A. Arefin, C. Riveros, R. Berretta and P.

Moscato (2011) proposed fast and scalable kNN algorithm
on GPU for very large data-sets. In their strategy, they

divided reluctant distance matrix into the chunks of size,

which can fit into the GPU’s onboard memory. This

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 10 | Oct-2014, Available @ http://www.ijret.org 369

approach is independent of the size of the distance matrix

and overall data size[5]. A. Arefin, et. al. (2012) proposed

graph based agglomerative clustering method based on kNN

graph and Boruvka’s algorithm on GPU[6] .

3. PROPOSED METHOLOLOGY

In our proposed parallel kNN algorithm, we have proposed
the methodology on OpenCL framework. Our model will

performs best on high-end GPU platform, also, the model

responds to the multi core commodity architecture. In our

parallel kNN model, we compute distance between each

training case and all test cases concurrently. Hence,

computes all distances in parallel in a step. We extended this

concept to calculate distance between all training cases and

all testing cases in parallel using many cores. These

computations we have taken up on many core GPU

platform, and developed kernels in OpenCL to compute the

task in parallel.

Finding distance ‘d’ for finding nearest neighbour is the

crucial and compute intensive task in kNN classifier. We

have ported the ‘distance’ computation on GPU to perform

the parallel operation, which has resulted to considerable

improvement in kNN performance. The major two kernels

work for parallelising the computation on multiple threads

on GPU, 1.Distance computation to find the distance

between the individual attributes points and 2.Sum up the

partial computed distance to find the total sum to get the

distance between the points for finding the nearest

neighbouring points among the available.

Fig 2: Proposed Parallel kNN flowchart

The compute intensive step in kNN is distance

computations, which is done on GPU where as others are

performed on CPU.

The pseudo code for our parallel kNN algorithm is as

follows,

Algorithm: parkNN

Input: Dataset, D = {(a1,c1), . . . , (xn,cn)},

Input query, t = (a1, . . . ,xn),
k- number of neighbour.

Output: Class ‘c’ to be identified for new instance of

dataset‘t’

Begin

On CPU:

1. Load data set to global memory

2. Decide ‘k’ for the cluster definition/generation

3. Transfer dataset to GPU memory

On GPU:

4. For all labelled instance (ai, ci), compute d(ai, a)

On CPU:
5. Sort d(ai,a) from lowest to highest, (i = 1, . . . ,n)

6. Select ‘k’ nearest instances to x:

7. Assign to x the most frequent class in

End

Distributing difference computations on many core GPU

performs computations faster due to parallelising the

difference computations. The following OpenCL kernels

demonstrate parallel computation on GPU cores

Kernel for Parallel difference computation

__kernel void diff(__global const float * query, __global

const float *data,

__global const int *nVal, __global float * diff)

{ int id = get_global_id(0);
int indexCent = id % (nVal[0] * nVal[1]);

int p = id % nVal[0];

int q = ((id / (nVal[0] * nVal[1])) % nVal[2]) * nVal[0];

diff[id] = (query[indexCent] - data[p + q]) *

(query[indexCent] - data[p + q]);

}

nVal contains following parameters,

0 -> #Attributes, 1 -> #Query , 2 -> #Data Points,

Workers = (#Attributes * #Query * #Data Points)

Kernel for Parallel Sum Computations
__kernel void Sum(__global const float * data, __global

float *sum, __global const int *nVal)

{ int id = get_global_id(0);

int index = id + ((id / nVal[2]) * nVal[1]);

if((id % nVal[2]) == (nVal[0] - nVal[2]))

sum[id] = data[index];

else

sum[id] = data[index] + data[(index + nVal[2])];

}

nVal contains following parameters,

0 -> Data Point Length (DPL), 1 -> DPL / 2, 2 -> Offset ,

Offset = DPL/2 + DPL%2,
workers = offset * # Data Points

The parallel computation of the difference computations in

two points, A & B, is illustrated in 0, as shown below. The

OpenCL kernels written for parallel performance on GPU

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 10 | Oct-2014, Available @ http://www.ijret.org 370

device, and are achieving computation methodology as

shown in 0.

Fig 3: Distance calculation between two points in Parallel

Parallel sum kernel as described in kernel ‘sum’. Multi-step

execution (partial data) for parallel sum calculation

generated partial results on each level which further used as

inputs to next level of parallel computations.

Illustrative Example: We illustrate working of our

proposed parallel kNN algorithm with the UCI Balloon

dataset, as described in Table1. The attribute values of

dataset are transformed into bit-mapped represented

datasets. The sample dataset split into training dataset and

test dataset with the ratio of 70:30 respectively. For UCI

balloon dataset 12 records are taken as training dataset, and

4 instances are taken as test datasets. The training dataset is

used to build model, however test dataset used to test the

built model for records to classify the query instance. The
test data set is shown in Table1, and the training dataset is

shown in Table2, as below. The balloon dataset has 4

attributes, 16 records, and is classified in two classes.

Table: 1 Balloons Dataset. (TEST)

Sr. No. Color Size Act Age Class

1 1 2 1 1 1

2 1 2 1 2 2

3 2 1 1 1 1

4 2 1 1 2 2

Table: 2 Balloons Dataset (TRAINING): Bitmap

representation

Sr. No. Color Size Act Age Class

1 1 1 1 1 1

2 1 1 1 2 2

3 1 1 2 1 2

4 1 1 2 2 2

5 1 2 2 1 2

6 1 2 2 2 2

7 2 1 2 1 2

8 2 1 2 2 2

9 2 2 1 1 1

10 2 2 1 2 2

11 2 2 2 1 2

12 2 2 2 2 2

Our proposed parallel kNN algorithm takes into account the

same inputs and produces the same output as sequential

algorithm, but the kNN operations performed are parallel for

performance achievement.

The following steps illustrate the parallel operations of kNN

algorithm.

CPU:

1. Load data set to global memory

2. Decide ‘k’ for the cluster definition/generation

3. Transfer dataset to GPU memory

GPU:

4. For all labelled instance (ai,ci), compute d(ai,a)

CPU:

5. Apply input query on build model for class

prediction,

a. Sort d(ai,a) from lowest to highest,(i=1,...,n
)

b. Select ‘k’ nearest instances to x:

c. Assign to ‘x’ the most frequent class in

The algorithmic steps are illustrated a bit detail as below

Step1: Load Data

Load data from CPU memory to GPU global memory.

The data is transformed from actual dataset, to bit

represented dataset at CPU. The ‘bit’ represented

dataset is then transferred GPU memory.

Step2 : Define ‘k’, Let say k=3,

Step 3: Transform dataset to GPU memory.

// for distance computations, we used squared

Euclidean distance method.
Step 4: Make Data vector ‘D’ and Query vector ‘Q’

Vector D (Training Data) contents:

Vector Q (Query Vector) contents:

Computing an Euclidian distance in parallel using openCL

kernel __diff()

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 10 | Oct-2014, Available @ http://www.ijret.org 371

Here, the parallel model is ready which can be used to

predict the input query class. The model is tested in step5.

This we have explained in the following four test cases.

Step 1: Find Class for each Test case

Test Case 1

Distance list is <1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 2, 3>, and their

corresponding

Class vector is <1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2 >

Pairing the <Distance vector, Class vector> we get,
<(1,1), (2,2), (2,2), (3,2), (1,2), (2,2), (3,2), (4,2),

(1,1),(2,2),(2,2),(3,2) >

After sorting paring vector in ascending order distance wise,

we get

<(1,1), (1,2), (1,1), (2,2), (2,2), (2,2), (2,2), (2,2), (3,2),

(3,2), (3,2), (4,2)>;

Selecting first ‘k’ samples we get training samples with

corresponding classes as <1, 2, 1>, for k=3.

Thus using majority,we can classify this test case in class

1”.

Test Case 2

For distance list <2, 1, 3, 2, 2, 1, 4, 3, 2, 1, 3, 2>,

After sorting and selecting first ‘k’ samples, we get training

samples as <2, 5, 10> with corresponding classes as

<2,2,2>.

Thus using majority, we can classify this test case in class

“2”.

Test Case 3

Distance list is <1, 2, 2, 3, 3, 4, 1, 2, 1, 2, 2, 3>

After sorting and selecting first k samples we get training

samples as <1, 7, 9> with corresponding classes as <1, 2, 1>

Thus using majority we can classify this test case in

class“1”.

Test Case 4

Distance list is <2, 1, 3, 2, 4, 3, 2, 1, 2, 1, 3, 2>

After sorting and selecting first k samples we get training

samples as <2, 8, 10> with corresponding classes as <2,2,2>

Thus using majority we can classify this test case in

class“2”.

We have tested our proposed parallel kNN algorithm on

different UCI datasets, as listed in Table-3.

Table 3: UCI Classification Dataset

Sr.

No.

Data Set

Name

Attributes Training

Records

Testing

Records

1. Balloons 4 12 4

2.
Space

Shuttle
6 12 4

3. Seeds 7 180 30

4.
Met
Data

6 432 60

5. ILPD 8 499 80

6.
CMC

Data
7 1400 74

The experimental results shown that, the model created to
predict for target query variable, is working fine and

produces almost 85 to 95% accuracy for prediction. As

represented in Table4, the accuracy of the prediction

depends on the size of the training dataset and the value of

the ‘k’. It is also observed that, large the volume of the

training dataset, the more mature the model is. Also, large

size of ‘k’ refines clustering output for the input query, but it

does not work always. The best values of the ‘k’ for the

given dataset has to identify by multiple observation and

outputs. We have tested our parallel kNN model on

following UCI datasets, categorised for classification only.

We have proved our model for performance and
classification accuracy, as shown in Table4 and Table5

respectively.

Table 4: Parallel kNN Algorithm (Classification Accuracy)

Data Set

Name

‘k’ for

kNN

Parallel

Accuracy

Balloons 3 100 %

Space Shuttle 5 75 %

Seeds 7 86 %

Met Data 9 95 %

ILPD 7 93 %

CMC Data 11 96 %

Table:5 Parallel kNN Performance on UCI Dataset

Sr

.N

o

DataSe

t Name

‘k’

Value

Traini

ng

Record

s

Testing

Rector

s

CPU

Time GPU

Time

1
Balloon

s
3 12 4

0.102sec
9 ms

2
Space

Shuttle
5 12 4

0.157sec
13 ms

3 Seeds 7 180 30 0.477sec 21 ms

4
Met

Data
9 432 60

0.621sec
56 ms

5 ILPD 7 499 80 1.253sec 76 ms

6
CMC

Data
11 1400 74

26.72sec 1384m

s

4. CONCLUSION

kNN, the instance-based classifier operate on the premises

that classification of unknown instances can be done by

relating the unknown to the known using the distance

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 10 | Oct-2014, Available @ http://www.ijret.org 372

function. Closer the distance, proximity for the similarity of

the class is more. In order to minimize the kNN compute

time, we have designed OpenCL based parallel algorithm

for many core highly parallel architectures. The results for

our OpenCL based parkNN proves that the performance

scales up sub-linearly towards the improved performance of
parallel kNN. The classification accuracy is not identified

with the proportional value of ‘k’, the better ‘k’ is to be

identified by multiple observations only. However,

concerned to performance our parallel kNN, parkNN, we

observed satisfactory scale up.

REFERENCES

[1] Shenshen Liang; Cheng Wang; Ying Liu; Liheng

Jian, "CUKNN: A parallel implementation of K-

nearest neighbor on CUDA-enabled GPU,"

Information, Computing and Telecommunication,

2009. YC-ICT '09. IEEE Youth Conference on ,

vol., no., pp.415,418, 20-21 Sept. 2009
[2] Quansheng Kuang, and Lei Zhao, “A Practical

GPU based KNN algorithm”, Proceedings of the

Second Symposium International Computer

Science and Computational Technology(ISCSCT

’09)

[3] Garcia, V.; Debreuve, E.; Nielsen, F.; Barlaud, M.,

"K-nearest neighbor search: Fast GPU-based

implementations and application to high-

dimensional feature matching," Image Processing

(ICIP), 2010 17th IEEE International Conference

on , vol., no., pp.3757,3760, 26-29 Sept. 2010
[4] G. Nolan, Improving the k-Nearest Neighbour

Algorithm with CUDA

[5] A. S. Arefin, C. Riveros, R. Berretta, and P.

Moscato, “Gpu-fs-knn: A fast and scalable knn

computation technique using gpu,” Faculty

Postgrad Research Poster, The University of

Newcastle, Australia, Sept 2011.

[6] Ahmed Shamsul Arefin, Carlos Riveros, Regina

Berretta, Pablo Moscato, “kNN-MST-

Agglomerative: A Fast and Scalable Graph-based

Data Clustering Approach” on GPU The 7th

International Conference on Computer Science &
Education (ICCSE 2012), July 14-17, 2012.

Melbourne, Australia

[7] Franco-Arcega, A.; Suarez-Cansino, J.; Flores-

Flores, L.G., "A parallel algorithm to induce

decision trees for large datasets," Information,

Communication and Automation Technologies

(ICAT), 2013 XXIV International Symposium on ,

pp.1,6, Oct. 30th - Nov. 1st , 2013.

[8] J.Zhu, G.Chen, B. Wu, "GPGPU Memory

Estimation and Optimization Targeting OpenCL

Architecture", IEEE International Conference on
Cluster Computing (CLUSTER), pp. 449-458,

Sept. 2012.

[9] Khronos OpenCL working group, “The OpenCL

Specification Version2.0”, Edited by A. Munshi,

Nov. 2013.

https://www.khronos.org/registry/cl/specs/opencl-

2.0.pdf.

BIOGRAPHIES

Valmik B Nikam is Bachelor of

Engineering (Computer Science and

Engineering) from Government College of

Engineering Aurangabad, Master of

Engineering (Computer Engineering) from
VJTI, Matunga, Mumbai, Maharashtra

state, and pursuing PhD in Computer

Department of VJTI. He was faculty at Dr. Babasaheb

Ambedkar Technological University, Lonere. He has 12

years of academic experience and 5 years of administrative

experience as a Head of Department. He has one year of

industry experience. He has attended many short-term

training programs and has been invited for expert lectures in

the workshops. Presently he is Associate Professor at

department of Computer Engineering & Information

Technology of VJTI, Matunga, Mumbai. His research

interests include Scalability of Data Mining Algorithms,
Data Warehousing, Big Data, Parallel Computing, GPU

Computing, Cloud Computing. He is member of CSI, ACM,

IEEE research organizations, and a life member of ISTE. He

has been felicitated with IBM-DRONA award in 2011.

B.B. Meshram is a Professor and Head of

Department of Computer Engineering and

Information Technology, Veermata Jijabai

Technological Institute, Matunga,

Mumbai. He is Ph.D. in Computer

Engineering. He has been in the
academics & research since 20 years. His current research

includes database technologies, data mining, securities,

forensic analysis, video processing, distributed computing.

He has authored over 203 research publications, out of

which over 38 publications at National, 91 publications at

international conferences, and more than 71 in international

journals, also he has filed eight patents. He has given

numerous invited talks at various conferences, workshops,

training programs and also served as chair/co-chair for many

conferences/workshops in the area of computer science and

engineering. The industry demanded M.Tech program on

Network Infrastructure Management System, and the
International conference “Interface” are his brain childs to

interface the industry, academia & researchers. Beyond the

researcher, he also runs the Jeman Educational Society to

uplift the needy and deprived students of the society, as a

responsibility towards the society and hence the Nation.

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

