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Abstract 
In data mining applications, one of the useful algorithms for classification is the kNN algorithm. The kNN search has a wide 

usage in many research and industrial domains like 3-dimensional object rendering, content-based image retrieval, statistics, 

biology (gene classification), etc. In spite of some improvements in the last decades, the computation time required by the kNN 

search remains the bottleneck for kNN classification, especially in high dimensional spaces. This bottleneck has created the 

necessity of the parallel kNN on commodity hardware. GPU and OpenCL architecture are the low cost high performance 

solutions for parallelising the kNN classifier. In regard to this, we have designed, implemented our proposed parallel kNN model 

to improve upon performance bottleneck issue of kNN algorithm. 

 

In this paper, we have proposed parallel kNN algorithm on GPU and OpenCL framework. In our approach, we distributed the 

distance computations of the data points among all GPU cores. Multiple threads invoked for each GPU core. We have 
implemented and tested our parallel kNN implementation on UCI datasets. The experimental results show that the speedup of the 

KNN algorithm is improved over the serial performance. 
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1. INTRODUCTION 

In data mining, classification is the problem of identifying 

set of categories/sub-populations from new observations; 

based on a training dataset containing observations/instances 
whose category membership known in advance. The data 

mining algorithm performs classification is called classifier. 

Classifier is a supervised learning category. In supervised 

learning, input set of observations has an effect on output set 

of observations; the model includes the mediating variables 

between the input and output variables. kNN uses a 

continuous data for building classification model. Being the 

capability of handling large datasets for solving the big 

problems, kNN has been widely accepted in research and 

industry applications. Though, kNN has been accepted 

widely; due to the large datasets, performance became the 
performance bottleneck for the algorithm. kNN classifier is 

an instance based learning (IBL) which follows case based 

reasoning (CBR) approach to solve new problems. This 

learning approach is a lazy learning. kNN classifier is the 

most widely used classifier in the data mining domain, and 

has been accepted for wide range and volume of datasets. A 

new instance is classified as the most frequent class of its 

‘K’ nearest neighbours. 

 

OpenCL is a generic many core computing programming 

framework used for parallelizing applications on the GPU’s 

parallel architecture. OpenCL and GPU is most preferred for 
parallelizing kNN. It is observed that, kNN is 

embarrassingly parallel in nature and a good candidate for 

parallelism.  In this paper, we have explored the design and 

experimental results of our parallel kNN on GPU and 

OpenCL architecture. We have proposed, implemented and 

tested OpenCL based parallel kNN algorithm on GPU 
platform. We observed that, our proposed parallel kNN on 

OpenCL & GPU platform performs well over the sequential 

performance of kNN. In addition to the performance, the 

accuracy of our proposed kNN algorithm is achieved to the 

level of satisfaction. 

 

This paper is organised as below: Section2 discusses the 

literature survey on kNN classifier, related work in parallel 

kNN algorithm, OpenCL and GPU technology. Section3 

describes our methodology on OpenCL framework for 

parallel kNN algorithm. Section4 discusses on result 

analysis. We have observed the results for scaleup on 
performance. Section5 is the conclusion of  our work and 

the paper. 

 

2. LITERATURE SURVEY 

The basic process of sequential kNN algorithm is as follows: 

First, the data pre-processing phase is to initialize the 

labelled dimensional training dataset as well as the test 

dataset to be classified.  Second, select one test point in the 

test dataset and calculate the distances between it and each 

point in the train dataset. The next phase is to sort the results 

of distances computed, and find out ‘k’ smallest results. The 

fourth step is to determine the class label of the test point by 

the election result of ‘k’ points. Thus, selecting another 
point in the test dataset and repeat the process to classify the 

test dataset[5]. 

 

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Graphics_processing_unit
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The pseudo-code for the sequential kNN algorithm is as 

follows, 

Algorithm: kNN 

Input:  Dataset, D = {(x1,c1), . . . , (xN,cN)}, 

Input query t = (x1, . . . ,xn), k- number of 

neighbour. 
Output:  class ‘c’ to be identified for new instance of 

dataset ‘t’ 

 

Begin 

For each labelled instance (xi, ci) 

calculate  d(xi, x) 

Order d(xi,x) from lowest to highest, (i = 1, . . . ,N) 

Select ‘K’ nearest instances to  x:   
  

Assign to x the most frequent class in    
  

End 

 

If we have 4 test cases and 12 training points, then in 

traditional algorithm we visit each training point 4 times and 

will be perform total 48 serial operations. Thus, for ‘m’ test 

cases, and ‘n’ training points there would be O(mn) time 
complexity. The time complexity is very high if test cases 

and training points become very large in volume. This has 

created the need to parallelize operations for kNN algorithm. 

The compute intensive operational part of kNN algorithm 

taken up for the parallel and simultaneous operations, can 

lead to reasonable reduction in compute time. The optimal 

value for ‘k’ identified in the range of 3 to 10. In general, 

large ‘k’ value is more precise as it reduces the overall 

noise. 

 

kNN has been used in statistical methodologies and pattern 

recognition since beginning. ‘k’ nearest neighbours 
measured by a distance function. Here we have used 

Euclidian distance. The Euclidian distance measured 

between two points, ‘a’ and ‘b’, is shown below  in equation 

(1). 

 

d(a,b) =          
  

    .........................................(1) 

 

In addition to Euclidian distance, there are Manhattan 

distance, Minkowski distance are also used for measuring 
distances. These distance measures are only used for 

continuous data variables, however, in case of categorical 

variables the Hamming distance must be used.  If there is 

continuous and categorical variables exist in the dataset, 

standardization of the numerical variables between 0 and 1 

is done to achieve same type data values for the entire 

dataset. This is also called as normalization of dataset. 

 

2.1 OpenCL Framework 

Due to tremendous computing power, General Purpose 

computing on GPU (GPGPU) has been widely adopted by 

the developers and researchers [7]. Khronos group has 

proposed OpenCL (Open Computing Language) framework 
for programming many core architecture [8]. OpenCL is an 

open industry standard for general-purpose parallel 

programming. OpenCL device ‘kernels’ contains 

computation to be carried out in parallel. In order to achieve 

parallel computation, many work-items, work groups, etc 

the components of OpenCL data parallel execution model, 

as shown in the 0, spawns on multiple data items [9]. 

 

 
Fig 1: Data parallel execution using OpenCL 

 
The data parallelisation task happens through the work items 

that executes in work-groups as shown in 0 For parallel 

computing and performance, OpenCL memory hierarchy 

has four types of device memories viz private, global, 

constant and local memories. Efficient use of each of them 

need to be done for high performance achievement [7][8]. 

 

2.2 Related Work on Parallel kNN 

kNN is widely used classification algorithm and very 

parallel friendly because of number of independent 

operations. It is required to scan all the objects for any new 

entry. It is known for lazy learning as all the time dataset 

needs to be scanned. When training and test dataset size is 
large, the speed will be quite slow which makes it the best 

candidate to be processed in parallel. S. Liang , C. Wang, Y. 

Liu and L. Jian (2009) have focused on parallelizing sorting 

and distance calculation process due to high compute 

intensiveness. Distances between the current object and all 

the data set objects are calculated in parallel. They made two 

kernels for the same. Sorting Kernel will find the rank of 

particular object in data set.[1]. Q. Kuang and L. Zhao 

(2009) proposed parallel scheme for processing testing data 

set and training data set by dividing computation of result 

data set. During distance calculation, result data-set is 
divided into tiles and each tiles of width T is processed by 

an independent block in parallel. Each block contains TxT 

thread each of which calculates the single distance[2]. 

Garcia V. Debreuve E. Nielsen F. and Barlaud M. (2010) 

suggested CUDA based and CUBLAS based approaches for 

the parallelism of kNN. The approach except sorting is 

almost similar to S. Liang et al[1] approach. CUBLAS 

implementation proved high speed up [3] for performance. 

G. Nolan proposed improved bubble sort on CUDA for kNN 

process. they stated iterative version of bitonic sort used for 

parallelisation[4]. A. Arefin, C. Riveros, R. Berretta and P. 

Moscato (2011) proposed fast and scalable kNN algorithm 
on GPU for very large data-sets. In their strategy, they 

divided reluctant distance matrix into the chunks of size, 

which can fit into the GPU’s onboard memory. This 
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approach is independent of the size of the distance matrix 

and overall data size[5]. A. Arefin, et. al. (2012) proposed 

graph based agglomerative clustering method based on kNN 

graph and Boruvka’s algorithm on GPU[6] . 

 

3. PROPOSED METHOLOLOGY 

In our proposed parallel kNN algorithm, we have proposed 
the methodology on OpenCL framework. Our model will 

performs best on high-end GPU platform, also, the model 

responds to the multi core commodity architecture. In our 

parallel kNN model, we compute distance between each 

training case and all test cases concurrently. Hence, 

computes all distances in parallel in a step. We extended this 

concept to calculate distance between all training cases and 

all testing cases in parallel using many cores. These 

computations we have taken up on many core GPU 

platform, and developed kernels in OpenCL to compute the 

task in parallel. 

 
Finding distance ‘d’ for finding nearest neighbour is the 

crucial and compute intensive task in kNN classifier. We 

have ported the ‘distance’ computation on GPU to perform 

the parallel operation, which has resulted to considerable 

improvement in kNN performance. The major two kernels 

work for parallelising the computation on multiple threads 

on GPU, 1.Distance computation to find the distance 

between the individual attributes points and 2.Sum up the 

partial computed distance to find the total sum to get the 

distance between the points for finding the nearest 

neighbouring points among the available. 
 

 
Fig 2: Proposed Parallel kNN flowchart 

 

The compute intensive step in kNN is distance 

computations, which is done on GPU where as others are 

performed on CPU. 
 

The pseudo code for our parallel kNN algorithm is as 

follows, 

 

Algorithm: parkNN 

Input: Dataset, D = {(a1,c1), . . . , (xn,cn)}, 

Input query, t = (a1, . . . ,xn), 
k- number of neighbour. 

Output: Class ‘c’ to be identified for new instance of 

dataset‘t’ 

Begin 

On CPU: 

1. Load data set to global memory 

2. Decide ‘k’ for the cluster definition/generation 

3. Transfer dataset to GPU memory 

On GPU: 

4. For all labelled instance (ai, ci), compute  d(ai, a) 

On CPU: 
5. Sort d(ai,a) from lowest to highest, ( i = 1, . . . ,n) 

6. Select ‘k’ nearest instances to  x:   
  

7. Assign to x the most frequent class in    
  

End 
 

Distributing difference computations on many core GPU 

performs computations faster due to parallelising the 

difference computations. The following OpenCL kernels 

demonstrate parallel computation on GPU cores 

 

Kernel for Parallel difference computation 

__kernel void diff(__global const float * query, __global 

const float *data, 

__global const int *nVal, __global float * diff) 

{ int id = get_global_id(0); 
int indexCent = id % ( nVal[0] * nVal[1] ); 

int p = id % nVal[0]; 

int q = (( id / (nVal[0] * nVal[1]) ) % nVal[2] ) * nVal[0]; 

diff[ id ] = (query[indexCent] - data[ p + q ]) * 

(query[indexCent] - data[ p + q ]); 

} 

nVal contains following parameters, 

0 -> #Attributes,  1 -> #Query , 2 -> #Data Points, 

# Workers =  (#Attributes * #Query * #Data Points) 

 

Kernel for Parallel Sum Computations 
__kernel void Sum(__global const float * data, __global 

float *sum, __global const int *nVal) 

{ int id = get_global_id(0); 

int index = id + (( id / nVal[2] ) * nVal[1] ); 

if( (id % nVal[2]) ==  (nVal[0] - nVal[2])) 

sum[id] = data[index]; 

else 

sum[id] = data[index] + data[(index + nVal[2])]; 

} 

nVal contains following parameters, 

0 -> Data Point Length (DPL), 1 -> DPL / 2, 2 -> Offset , 

Offset = DPL/2 + DPL%2, 
# workers = offset * # Data Points 

The parallel computation of the difference computations in 

two points, A & B, is illustrated in 0, as shown below. The 

OpenCL kernels written for parallel performance on GPU 
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device, and are achieving computation methodology as 

shown in 0. 

 

 
Fig 3: Distance calculation between two points in Parallel 

 

Parallel sum kernel as described in kernel ‘sum’. Multi-step 

execution (partial data) for parallel sum calculation 

generated partial results on each level which further used as 

inputs to next level of parallel computations. 
 

Illustrative Example: We illustrate working of our 

proposed parallel kNN algorithm with the UCI Balloon 

dataset, as described in Table1. The attribute values of 

dataset are transformed into bit-mapped represented 

datasets. The sample dataset split into training dataset and 

test dataset with the ratio of 70:30 respectively. For UCI 

balloon dataset 12 records are taken as training dataset, and 

4 instances are taken as test datasets. The training dataset is 

used to build model, however test dataset used to test the 

built model for records to classify the query instance. The 
test data set is shown in Table1, and the training dataset is 

shown in Table2, as below. The balloon dataset has 4 

attributes, 16 records, and is classified in two classes. 

 

Table: 1 Balloons Dataset. (TEST) 

Sr. No. Color Size Act Age Class 

1 1 2 1 1 1 

2 1 2 1 2 2 

3 2 1 1 1 1 

4 2 1 1 2 2 

 

 

 

Table: 2 Balloons Dataset (TRAINING): Bitmap 

representation 

Sr. No. Color Size Act Age Class 

1 1 1 1 1 1 

2 1 1 1 2 2 

3 1 1 2 1 2 

4 1 1 2 2 2 

5 1 2 2 1 2 

6 1 2 2 2 2 

7 2 1 2 1 2 

8 2 1 2 2 2 

9 2 2 1 1 1 

10 2 2 1 2 2 

11 2 2 2 1 2 

12 2 2 2 2 2 

 

Our proposed parallel kNN algorithm takes into account the 

same inputs and produces the same output as sequential 

algorithm, but the kNN operations performed are parallel for 

performance achievement. 

 
The following steps illustrate the parallel operations of kNN 

algorithm. 

CPU: 

1. Load data set to global memory 

2. Decide ‘k’ for the cluster definition/generation 

3. Transfer dataset to GPU memory 

GPU: 

4. For all labelled instance (ai,ci), compute  d(ai,a) 

CPU: 

5. Apply input query on build model for class 

prediction, 

a. Sort  d(ai,a) from lowest to highest,(i=1,...,n 
) 

b. Select ‘k’ nearest instances to  x:   
  

c. Assign to ‘x’ the most frequent class in    
  

 

The algorithmic steps are illustrated a bit detail as below 

Step1: Load Data 

Load data from CPU memory to GPU global memory. 

The data is transformed from actual dataset, to bit 

represented dataset at CPU. The ‘bit’ represented 

dataset is then transferred GPU memory. 

Step2 : Define ‘k’, Let say k=3, 

Step 3: Transform dataset to GPU memory. 

// for distance computations, we used squared 

Euclidean distance method. 
Step 4: Make Data vector ‘D’ and Query vector ‘Q’ 

 

Vector D (Training Data) contents: 

 

 
Vector Q (Query Vector) contents: 

 

 
Computing an Euclidian distance in parallel using openCL 

kernel   __diff( ) 
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Here, the parallel model is ready which can be used to 

predict the input query class. The model is tested in step5. 

This we have explained in the following four test cases. 

 

Step 1: Find Class for each Test case 

Test Case 1 

Distance list is <1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 2, 3>, and their 

corresponding 

Class vector is  <1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2  > 

Pairing the <Distance vector, Class vector> we get, 
<(1,1), (2,2), (2,2), (3,2), (1,2), (2,2), (3,2), (4,2), 

(1,1),(2,2),(2,2),(3,2) > 

 

After sorting paring vector in ascending order distance wise, 

we get 

<(1,1), (1,2), (1,1), (2,2), (2,2), (2,2), (2,2), (2,2), (3,2), 

(3,2), (3,2), (4,2)>; 

Selecting first ‘k’ samples we get training samples with 

corresponding classes as <1, 2, 1>, for k=3. 

 

Thus using majority,we can classify this test case in class 

1”. 
 

Test Case 2 

For distance list <2, 1, 3, 2, 2, 1, 4, 3, 2, 1, 3, 2>, 

After sorting and selecting first ‘k’ samples, we get training 

samples as <2, 5, 10> with corresponding classes as 

<2,2,2>. 

Thus using majority, we can classify this test case in class 

“2”. 

 

Test Case 3 

Distance list is <1, 2, 2, 3, 3, 4, 1, 2, 1, 2, 2, 3> 
 

After sorting and selecting first k samples we get training 

samples as <1, 7, 9> with corresponding classes as <1, 2, 1> 

Thus using majority we can classify this test case in 

class“1”. 

 

Test Case 4 

Distance list is <2, 1, 3, 2, 4, 3, 2, 1, 2, 1, 3, 2> 

After sorting and selecting first k samples we get training 

samples as <2, 8, 10> with corresponding classes as <2,2,2> 

Thus using majority we can classify this test case in 

class“2”. 
 

We have tested our proposed parallel kNN algorithm on 

different UCI datasets, as listed in Table-3. 

 

Table 3: UCI Classification Dataset 

Sr. 

No. 

Data Set 

Name 

Attributes Training 

Records 

Testing 

Records 

1.  Balloons 4 12 4 

2.  
Space 

Shuttle 
6 12 4 

3.  Seeds 7 180 30 

4.  
Met 
Data 

6 432 60 

5.  ILPD 8 499 80 

6.  
CMC 

Data 
7 1400 74 

 

The experimental results shown that, the model created to 
predict for target query variable, is working fine and 

produces almost 85 to 95% accuracy for prediction. As 

represented in Table4, the accuracy of the prediction 

depends on the size of the training dataset and the value of 

the ‘k’. It is also observed that, large the volume of the 

training dataset, the more mature the model is. Also, large 

size of ‘k’ refines clustering output for the input query, but it 

does not work always. The best values of the ‘k’ for the 

given dataset has to identify by multiple observation and 

outputs. We have tested our parallel kNN model on 

following UCI datasets, categorised for classification only. 

We have proved our model for performance and 
classification accuracy, as shown in Table4 and Table5 

respectively. 

 

Table 4: Parallel kNN Algorithm (Classification Accuracy) 

Data Set 

Name 

‘k’ for  

kNN 

Parallel 

Accuracy 

Balloons 3 100 % 

Space Shuttle 5 75 % 

Seeds 7 86 % 

Met Data 9 95 % 

ILPD 7 93 % 

CMC Data 11 96 % 

 

Table:5 Parallel kNN Performance on UCI Dataset 

Sr

.N

o 

DataSe

t Name 

‘k’ 

Value 

Traini

ng 

Record

s 

Testing 

Rector

s 

CPU 

Time GPU 

Time 

1 
Balloon

s 
3 12 4 

0.102sec 
9 ms 

2 
Space 

Shuttle 
5 12 4 

0.157sec 
13 ms 

3 Seeds 7 180 30 0.477sec 21 ms 

4 
Met 

Data 
9 432 60 

0.621sec 
56 ms 

5 ILPD 7 499 80 1.253sec 76 ms 

6 
CMC 

Data 
11 1400 74 

26.72sec 1384m

s 

4. CONCLUSION 

kNN, the instance-based classifier operate on the premises 

that classification of unknown instances can be done by 

relating the unknown to the known using the distance 
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function. Closer the distance, proximity for the similarity of 

the class is more. In order to minimize the kNN compute 

time, we have designed OpenCL based parallel algorithm 

for many core highly parallel architectures. The results for 

our OpenCL based parkNN proves that the performance 

scales up sub-linearly towards the improved performance of 
parallel kNN. The classification accuracy is not identified 

with the proportional value of ‘k’, the better ‘k’ is to be 

identified by multiple observations only. However, 

concerned to performance our parallel kNN, parkNN, we 

observed satisfactory scale up. 
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