
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 315

JOOQ-JAVA OBJECT ORIENTED QUERYING

Anuj Sharma
1
, Paras Nath Barwal

2

1
Project Associate, E-governance, CDAC, Noida

2
Joint Director, E-governance, CDAC, Noida

Abstract
JOOQ is a query language as derived from SQL or JOOQ is a query language in which SQL uses the objects of OOQ. As there

are many issues in integration of java application with various databases via JDBC. This paper proposes a new java library

known as JOOQ. The primary aim of JOOQ focuses on integration issues in java programming language. With JOOQ,

programmers can write SQL queries in a simpler and faster way.

JOOQ thus decreases the programming effort by 10-20% which leads to higher quality of code with low error rate. Thus the

application is also significantly light and less prone to errors.

Keywords: Java, JDBC, SQL, Database, Error, JOOQ.

--***---

1. INTRODUCTION

Java Object Oriented Querying, usually known as JOOQ,

is a light database-mapping programming library in Java

that actualizes the dynamic record design. The main

intention of this paper is to present both social and research

work situated by giving a space particular language to build

queries from classes produced from a database composition.

One of the feature JOOQ offers that we like most is the

capacity to create code specifically from existing database

tables (like how JAXB functions with XSD patterns). The

ensuing Java code authorizes sort wellbeing in SQL

questions alongside abstracting the underlying information

store execution. This conduct permits a developer to utilize

the same code with Mysql or Postgres in creation, and H2 or

comparable being developed.

JOOQ guarantees that SQL ought to start things out in any

database reconciliation. Consequently, it doesn't present

another literary question language, yet rather takes into

consideration building plain SQL from JOOQ protests and

code produced from a database diagram. JOOQ utilizes

JDBC to call the underlying SQL inquiries. While it gives

deliberation on top of JDBC, JOOQ does not have to the

extent that and many-sided quality as standard research

work social mapping libraries, for example, Hibernate and

JPA.

JOOQ's closeness to SQL has favorable circumstances over

run of the mill object-social mapping libraries. SQL has

numerous peculiarities that can't be utilized as a part of an

item arranged programming standard; this set of contrasts is

alluded to as the research work social impedance befuddle.

By being near SQL, JOOQ serves to anticipate language

structure lapses and sort mapping issues. Additionally,

variable tying is dealt with. It is additionally conceivable in

JOOQ to make exceptionally perplexing inquiries, that

include associating, unions, settled choose and complex

joins. JOOQ additionally upholds database-particular

peculiarities, for example, UDTs, enum sorts, put away

techniques and local capacities.

2. BACKGROUND

In spite of the fact that protest turned programming

languages, for example, Java, Smalltalk, and C++ and C #

have ruled the server-side business application world for a

long time, shockingly question arranged database did not

take off because of various reasons. Social database still is

the larger part of persistence mechanism.

The standard programming interface to database is SQL,

which was initially intended for human cooperation

purposes. As a set arranged language, with extremely

constrained control stream and detached language structure,

it gradually turns into a hindrance for an immaculate turned

framework plan. Inside the information access layer, over

and over again we discover engineers discard the lovely

protest model, however begin connecting SQL strings

(either specifically or by implication) and make such a

variety of chaotic codes. Far more detestable, on account of

the limitable of SQL, numerous engineers use information

access layer, or the information model itself as the

beginning stage when outlining a framework. This ground-

up methodology has a tendency to make the last framework

more administration arranged or more procedural.

JOOQ wraps the fundamental SQL language into bland item

arranged APIs, and conceals the underline complexities, for

example, porting to contrast databases. It goes about as a

mapping apparatus between items to lines in database tables,

additionally has the ability of controlling information with

control stream. Since the yield of JOOQ compiler is Java

classes, designers can without much of a stretch coordinate

JOOQ into their applications.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 316

There are times where a bloated ORM is the right decision

for an undertaking. Different times, it simply includes an

execution punishment and impedes conversing with the

underlying information store. There are other comparative

schemas (Mybatis, Slick for Scala) however we have

discovered JOOQ to be decently finish peculiarity savvy and

exceptionally receptive to bugs.

3. DESIGN GOALS

The research work is about JOOQ as a basic language and

simple to learn and utilization for Java designers. The

punctuation and language structure is near Java rather than

SQL. Really all the rationale of creating SQL strings are

totally escaped JOOQ developer.

3.1 Object-Oriented

Everything is an objects in JOOQ; there is no primitive sort.

All operations are characterized at class level, for example,

Create, Retrieve, and Update and Delete (standard CRUD in

SQL). Those exceptionally entangled question semantics are

pleasantly wrapped in Criteria, Projection and Join

interfaces. From engineers' point of view, they are just

managing an uncommon set of research works, which

happened to be put away in a social database transparently

to their configuration model.

3.2 Database Generic

JOOQ will be aggregated into Java classes, which utilize

ANSI standard SQL and can run against any social

databases without adjustment. This makes application

porting simple, yet it additionally suggests a restriction of

JOOQ, we can't help any database particular gimmicks or

changes. In future discharges, we will add database flavor

choice to permit streamlining for particular databases.

3.3 Less Overhead

The code produced by JOOQ compiler ought not to be much

slower than transcribed local SQL squares. Since compiler

produces all SQL explanations (in view of advancement, for

example, utilizing arranged articulations, or table join

requesting) as opposed to linking them at runtime, JOOQ

can really give better execution sometimes.

3.4 Simple

JOOQ has comparative straightforward grammar and

language structure like Java. It has less decisive word, and

does not help primitive information sort. Since it fills a

solitary need of showing SQL inquiry, the API is

straightforward and clean.

3.5 Easy to Integrate

Since JOOQ compiler produces Java classes (or other OO

language yield in future discharges), it is not difficult to

incorporate it into existing frameworks as information

access layer.

3.6 Portable

Java is a convenient language runs on most working

frameworks. With its database nonexclusive peculiarity,

JOOQ is very versatile to numerous platforms.

4. IMPLEMENTATION EXAMPLE

a) A nested query selecting from an aliased table:

 -- Select authors with books that are sold out

 SELECT * FROM AUTHOR x

 WHERE EXISTS (SELECT 1

 FROM BOOK

 WHERE BOOK.STATUS = 'SOLD'

 AND BOOK.AUTHOR_ID = x.ID);

b) And its equivalent in JOOQ DSL:

 // Use the aliased table in the select statement

 create.selectFrom(table("AUTHOR").as("x"))

 .where(exists(selectOne()

 .from(table("BOOK"))

where(field("BOOK.STATUS").equal(field("BOOK_STAT

US.SOLD")))

.and(field("BOOK.AUTHOR_ID").equal(field("AUTHOR.I

D")))));

c) More simply, using code generation from the database

metadata to generate constants:

 // Use the aliased table in the select statement

 final Author x = AUTHOR.as("x");

 create.selectFrom(x)

 .where(exists(selectOne()

 .from(BOOK)

.where(BOOK.STATUS.equal(BOOK_STATUS.SOLD))

 .and(BOOK.AUTHOR_ID.equal(x.ID))));

5. PARTITIONING WITH SQL

JOOQ is an extraordinary structure when it needs to work

with SQL in Java without having an excessive amount of

ORM in its way. In the meantime, it might be incorporated

into numerous situations as it is putting forth to help for

some database-particular peculiarities. One such database-

particular gimmick is dividing in PostgreSQL. Apportioning

in PostgreSQL is for the most part utilized for execution

reasons in light of the fact that it can enhance question

execution in specific circumstances.

5.1 Partitioning in PostgreSQL

With the dividing gimmick of PostgreSQL that have the

likelihood of part information that would structure an

immense table into various separate tables. Each of the parts

is a typical table which inherits its sections and stipulations

from a guardian table. This supposed table legacy could be

utilized for "reach parceling" where, for instance, the

information from one extent does not cover the information

from an alternate extends as far as identifiers, dates or other

criteria.

http://en.wikipedia.org/wiki/Automatic_programming
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Metadata

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 317

Like in the accompanying illustration, it can have parceling

for a table "creator" that has the same remote key of a table

"authorgroup" in all its columns.

CREATE TABLE author (

authorgroup_id int,

LastName varchar(300)

);

CREATE TABLE author_1 (

CONSTRAINT authorgroup_id_check_1

CHECK ((authorgroup_id = 1))

INHERITS (author);

);

CREATE TABLE author_2 (

CONSTRAINT authorgroup_id_check_2

CHECK ((authorgroup_id = 2))

INHERITS (author);

);

As should be obvious, it set up legacy and – with a specific

end goal to have a basic example – it simply put one

imperative watching that the segments have the same

"authorgroup_id". Essentially, these results in the "creator"

table have just table and section definitions, however no

information. On the other hand, when questioning the

"creator" table, PostgreSQL will truly question all the

inheriting "author_n" tables giving back a joined together

come about.

5.2 A Trivial Approach to using JOOQ with

Partitioning

To work with the apportioning depicted above, JOOQ offers

a few alternatives. Programmer can utilize the default way

which is to let JOOQ create one class for every table. So as

to embed information into numerous tables, user would need

to utilize diverse classes. This methodology is utilized as a

part of the accompanying scrap:

InsertQuery query1 = dsl.insertQuery(AUTHOR_1);

query1.addValue(AUTHOR_1.ID, 1);

query1.addValue(AUTHOR_1.LAST_NAME, "Data");

query1.execute();

InsertQuery query2 = dsl.insertQuery(AUTHOR_2);

query2.addValue(AUTHOR_2.ID, 1);

query2.addValue(AUTHOR_2.LAST_NAME, "Data");

query2.execute();

// select

Assert.assertTrue(dsl

.selectFrom(AUTHOR_1)

.where(AUTHOR_1.LAST_NAME.eq("Data"))

fetch().size() == 1);

Assert.assertTrue(dsl

.selectFrom(AUTHOR_2)

.where(AUTHOR_2.LAST_NAME.eq("Data"))

.fetch().size() == 1);

Here the code shows that various classes created by JOOQ

need to be utilized, so relying upon what number of

allotments to be done, produced classes can infect codebase.

Additionally, envision that inevitably need to repeat over

parts, which would be unwieldy to do with this

methodology. An alternate methodology could be that

utilizes JOOQ to construct fields and tables utilizing string

control yet that is mistake inclined again and anticipates

help for nonexclusive sort security. Additionally, consider

the situation where it needs genuine information detachment

as far as multi-tenure.

It can be seen that there are a few contemplations to do

when working with dividing. Luckily JOOQ offers different

methods for working with divided tables, and in the

accompanying we'll analyze approaches, so that can pick the

one most suitable for database queries.

5.3 Using JOOQ with Partitioning and Multi-

Tenancy

JOOQ's runtime-composition mapping is regularly used to

acknowledge database situations, such that for instance amid

advancement, one database is questioned yet when sent to

creation, the questions are going to an alternate database.

Multi-occupancy is an alternate suggested use case for

runtime mapping as it takes into consideration strict

apportioning and for arranging user application to just

utilize databases or tables being arranged in the runtime-

composition mapping. So running the same code would

bring about meeting expectations with diverse databases or

tables that relying upon the setup which took into

consideration genuine detachment of information regarding

multi-tenure.

The accompanying setup taken from the JOOQ

documentation is executed when making the Dslcontext so it

might be viewed as a framework wide setting:

Settings settings = new Settings()

.withRenderMapping(new RenderMapping()

.withSchemata(

.new MappedSchema().withInput("RAM")

.withOutput("MY_WORLD")

.withTables(

new MappedTable().withInput("AUTHOR")

.withOutput("AUTHOR_1"))));

// Add the settings to the Configuration

DSLContext create = DSL.using(

connection, SQLLanguage.ORACLE, settings);

 // Run queries with the "mapped" configuration

create.selectFrom(AUTHOR).fetch();

// results in SQL:

// “SELECT * FROM MY _WORLD.AUTHOR_1”

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 318

Utilizing this methodology user can delineate table to one

segment forever e.g. "Creator" to "Author_1" nature

"RAM". In an alternate environment user could decide to

guide "Creator" table to "Author_2".

Runtime-outline mapping just permits user to guide to

precisely one table on a for every question premise, so user

couldn't deal with the utilization situation where user would

need to control more than one table parcel. In the event that

user might want to have more adaptability user may need to

consider the following methodology.

5.4 Using JOOQ with Partitioning and without

Multi-Tenancy

In the event that user have to handle numerous table parcels

without having multi-tenure, user require a more adaptable

method for getting to segments. The accompanying sample

demonstrates how user can destroy it an element and sort

safe way, staying away from lapses and being usable in the

same rich way user are utilized to by JOOQ:

// add

for(int i=1; i<=2; i++)

{

Builder part = forPartition(i);

InsertQuery query =

dsl.insertQuery(part.table(AUTHOR));

query.addValue(part.field(AUTHOR.ID), 1);

query.addValue(part.field(AUTHOR.LAST_NAME),

"Data");

query.execute();

}

// select

 for(int i=1; i<=2; i++)

{

Builder part = forPartition(i);

Assert.assertTrue(dsl

.selectFrom(part.table(AUTHOR))

.where(part.field(AUTHOR.LAST_NAME).eq("Well"))

.fetch()

.size() == 1);

}

What user can see above is that the segment numbers are

inattentive away so user can utilize "Creator" table rather

than "Author_1". Accordingly, user code won't be dirtied

with numerous produced classes. Something else is that the

practitioner research work is introduced powerfully so user

can utilize it for instance within a circle like above.

Likewise it takes after the Builder design so user can work

on it like user are utilized to by JOOQ.

The code above is doing precisely the same as the first

inconsequential scrap, yet there are numerous profits like

sort sheltered and reusable access to parceled tables.

5.5 Integration of JOOQ Partitioning without

Multi-Tenancy into a Maven Build Process

(Optional)

In the event that user are utilizing Continuous-Integration

user can incorporate the result above so JOOQ is not

creating tables for the divided tables. This might be

accomplished utilizing a customary interpretation that

prohibits certain table names when producing Java classes.

At the point when utilizing Maven, user incorporation may

look something like this:

<generator>

<name>org.jooq.util.DefaultGenerator</name>

<database>

<name>org.jooq.util.postgres.PostgresDatabase</n

ame>

<includes>.*</includes>

<excludes>.*_[0-9]+</excludes>

<inputSchema>${db.schema}</inputSchema>

</database>

<target>

<packageName>com.user.company.jooq</packageName>

<directory>target/generated-sources/jooq</directory>

</target>

</generator>

At that point its simply calling mvn introduce and JOOQ

expert plugin will be creating the database outline in

aggregation time.

5.6 Integrating JOOQ with PostgreSQL:

Partitioning

This research work portrayed how JOOQ in fusion with the

parceling peculiarity of PostgreSQL might be utilized to

actualize multi-tenure and enhance database execution.

PostgreSQL's documentation expresses that for dividing "the

profits will ordinarily be advantageous just when a table

would generally be huge. The accurate time when a table

will profit from dividing relies on upon the application; in

spite of the fact that a dependable guideline is that the extent

of the table ought to surpass the physical memory of the

database server."

Accomplishing backing for dividing with JOOQ is as simple

as including design or a little utility class, JOOQ is then

ready to help parceling with or without multi-occupancy and

without giving up sort wellbeing. Separated from Java-level

incorporation, the depicted result likewise easily coordinates

into user manufacture and test methodology.

6. CONCLUSIONS

JOOQ gives an influential option to the Object-Relation

access layer. It is unadulterated Object-Oriented, easy to

learn, database and stage nonexclusive. What's more, since

JOOQ absorbed a lot of people great plans from existing OR

ventures, this makes it a decent application for any new Java

venture which requires social database as constancy layer.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 319

Ultimately, while JOOQ does not help transaction semantics

it is reasonably simple to wrap it within Spring

Transactions. Obviously one could combine Spring

Transactions with Spring JDBC, however would lose the

expressiveness and force of the JOOQ API.

REFERENCES

[1] Zhongling Li. (February 5, 2006). “Object-

Oriented Query Language,” IEEE A Technical

White Paper.

[2] Lucas Eder. (April, 2014). “Integrating jOOQ with

PostgreSQL: Partitioning,” In DZone research

work magazine, “SQLZone”.

[3] Rohit Pai. (May 2013). “Brief introduction to

jOOQ”, LiftHoff Communications Magazine, 05.

[4] S. Ozdemir. (July, 2014). “Nested query approach

using jOOQ”, Journal of Information Science and

Engineering 25.

[5] Berts. (July, 2014). “ORM frameworks in jOOQ”,

IEEE transaction.

[6] Codegen Maven. (2011). “jOOQ effective

repository used to manage database connectivity

and library”.

[7] Petri Kainulainen. (July 2014). “Typesafe dabase

and library of jOOQ”. Hawaii International

Conference on Database System Sciences (HICSS

’00).

[8] Majid Azimi. (January, 2014). “JOOQ must

become de facto standard for database querying”,

IEEE transaction.

[9] Alessio Harri ,. (May 2014). “OpenJPA is the

workhorse and JavaOOQ is the artist”,

ACM/Baltzer Journal of Database management,

Vol. 1, No. 3, pp. 255-265.

[10] Grambery Gmbh. (2014). “Object-relational

mapping using jOOQ”, Proceedings of the

SBT/IEEE International Database Management

Symposium.

[11] F. Zhan, C. Noon. (1996). “jOOQ's reason for

being - compared to JPA”, Database Science.

[12] L-V. Israel. (2006). “Implementation of jOOQ on

SQL queries”. PhD thesis, University of Siegen.

[13] G. Chen C. Li, M. Ye and J. Wu. (2005). “jOOQ's

reason of being - compared to LINQ”. In 2nd IEEE

International Conference on Database Query

Languages, ICMASS, pages 8–15.

[14] G. Chen M. Ye, C. Li and J. Wu. ,. (2005). “jOOQ

as an innovative solution for a better integration of

Java applications”. In Performance, Computing

Conference, PCCC, pages 535–540.

[15] J. M. Ng C. P. low, C. Fang and Y. H. Ang. (2008).

“Integration on stack overflows problem using

jOOQ”. Computer Science, 31:750–759.

https://twitter.com/hashtag/JOOQ?src=hash
https://twitter.com/alessioh
https://twitter.com/JavaOOQ

