
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 201

SPEED-POWER EXPLORATION OF 2-D INTELLIGENCE NETWORK-

ON-CHIP FOR MULTI-CLOCK MULTI-MICROCONTROLLER ON

28nm FPGA (Zynq-7000) DESIGN

Anoop Kumar Vishwakarma
1
, Uday Arun

2

1
Student (M.Tech.), ECE, ABES Engineering College Ghaziabad, UP, India

2
Membership, IEEE Circuit and System Society and ACM Embedded System Computing Society

Abstract
Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market

expectations of high performance at low cost and lower energy consumption. SoCs are complex designs with multiple embedded

processors, memory subsystems, and application specific peripherals. The bus arbitration and synchronization of Multi-

Microcontroller System-on-Chip (MMSoC) strongly influences the area, power and performance of the entire system as it uses

switching. The synchronization is generally done by multi clocking which leads to power consumption. Future MMSoC designs

will need novel on-chip communication architectures that can provide scalable and reliable data transport. On-chip network

architectures are believed to be the ideal solution to many of today’s SoC interconnection problems. Network-on-Chip (NoC)

architectures may adopt design concepts and methodologies from Multi-Processor/Multi-Microcontroller architectures.

Nevertheless, silicon implementation of networks requires a different perspective, because network architectures have to deal with

the advantages and limitations of the silicon fabric. These characteristics will require new methodologies for both on-chip switch

designs as well as routing algorithm designs. We envision that future on-chip systems will be communication-centric, in

particular, energy and performance issues in designing the Multi-Processor/Multi-Microcontroller System-on-Chip will become

challenging. In our work we have designed a switch-box for MMSoC for bus synchronization.

In this paper, we explore several critical aspects in the bus synchronization of MMSoC by using the generic Multi-

Microcontroller System-on-Chip architecture as the experimental platform; this paper presents both quantitative and qualitative

analysis on bus synchronization for Network-on-Chip (NoC). Commonly, we synchronize data bus only as it is more important

over the other buses namely address bus, control bus and status bus. But by synchronizing other buses we can improve the overall

performance of the entire Multi-Microcontroller System-on-Chip. New methodologies and solutions are also proposed to achieve

better performance and power balance for MMSoCs.

Keywords: SoC, MMSoC, NoC.

--***--

1. INTRODUCTION

Current time embedded systems are increasingly based on

Multi-Processor System-on-chip (MPSoC). These MPSoCs

typically contain multiple storage elements (SEs), networks

(NEs), I/O components, and a number of heterogeneous

programmable processors for flexible application support as

well as dedicated processing elements (PEs) for achieving

high performance and power goals MPSoCs have been

widely used in today’s high performance embedded

systems, such as network processors (NP), Mobile Phones

(MP) and parallel media processors (PMP). They combine

the advantages of data processing parallelism of multi-

processors and the high level integration of system-on-chip

(SoC). Driven by the advancement in semiconductor

technology, future SoCs will continue to accelerate in

system’s complexity and capacity. SoCs in the next decade

are expected to integrate hundreds, or even more of,

processing elements (PEs) and/or storage elements (SEs) on

a single chip.

But low cost embedded systems are limited to the

microcontroller performance. To improve the performance

of low cost embedded system we have to develop Multi-

Microcontroller System-on-Chip. So we are migrating

number of low cost Microcontrollers to a single chip. To

achieve it we can use the generic architecture of MMSoC

(Figure1). In generic MMSoC architecture microcontrollers

are connected to the global system bus by using a switch

box which is controlled by an arbitrator. To improve the

performance the connected microntrollers operate parallely.

As in most of cases only data bus is synchronized but by

synchronizing all buses in time shared mode will improve

performance and speed of MMSoC.

In order to cope with the design complexity of such systems

in a time-efficient way, the abstraction level of the design

process has in recent years been raised towards the system

level. Design Space Exploration (DSE) is a key ingredient

of such system-level design, during which a wide range of

design choices are explored, especially during the early

design stages. Therefore, such early design choices heavily

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 202

influence the success or failure of the final product, and we

can avoid wasting time and effort in further design steps

without the possibility of meeting design requirements

because of an inappropriate system architecture design.

Fig -1: Generic Architecture of multi-Micro Controller

System-On-Chip

2. ANATOMY OF BUS SYSTEM AT BOARD,

BACKPLANE AND I/O LEVEL

Fig -2: Bus system at board backplane and I/O level

3. ANATOMY OF BUS-CONNECTED MULTI-

PROCESSOR SYSTEM

Fig -3: A Bus-connected multiprocessor system, such as the

Sequent Symmetry

4. BUS ARBITRATION MODEL

Bus arbitration models are used in MPSoC/MMSoC

systems. These models have only data bus is synchronized.

4.1 Central Arbitration

Fig -4: Central Arbitration

4.2 Independent Request with Central Arbiter

Fig -5: Independent Request with Central Arbiter

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 203

4.3 Independent Request with Distributed Arbiter

Fig -6: Independent Request with Central Arbiter

5. ANATOMY OF SWITCH BOX

Fig -7: Anatomy of Switch Box

6. RELATED WORK AND DESIGN ANALYSIS

The modeling and designing of intelligence switch box is

done. The intelligence switch box shown in fig.7 has been

successfully simulated and synthesized for Zynq-7000 by

Xilinx Vivado 2013.4.

6.1 RTL Modeling of Intelligence Switch Box

SW00:process(ISB_Clk,Load_Addr,ISBC_ISB_DB_DIR,IS

BC_ISB_CB_DIR,ISBC_ISB_SB_DIR,LSB_AddrBus_IN0

0,LSB_DataBus00,LSB_CntlBus00,LSB_StatusBus00,ISB

C_TO_ISB_SBS,ISBC_TO_ISB_MCID,

ISBC_TO_ISB_BUSID)

variable SISR00 : std_logic_vector (2 downto 0):= "00Z";

variable ISBC_TO_ISB00_MCID : std_logic_vector (1

downto 0):= "ZZ";

Begin

End Process

SW01:process(ISB_Clk,Load_Addr,ISBC_ISB_DB_DIR,IS

BC_ISB_CB_DIR,ISBC_ISB_SB_DIR,LSB_AddrBus_IN0

1,LSB_DataBus01,LSB_CntlBus01,LSB_STATUSBUS01,I

SBC_TO_ISB_SBS,ISBC_TO_ISB_MCID,ISBC_TO_ISB

_BUSID)

variable SISR01 : std_logic_vector (2 downto 0):= "00Z";

variable ISBC_TO_ISB01_MCID : std_logic_vector (1

downto 0):= "ZZ";

begin

End Process

SW10:process(ISB_Clk,Load_Addr,ISBC_ISB_DB_DIR,IS

BC_ISB_CB_DIR,ISBC_ISB_SB_DIR,LSB_AddrBus_IN0

2,LSB_DataBus02,LSB_CntlBus02,LSB_STATUSBUS02,I

SBC_TO_ISB_SBS,ISBC_TO_ISB_MCID,ISBC_TO_ISB

_BUSID)

variable SISR10 : std_logic_vector (2 downto 0):= "00Z";

variable ISBC_TO_ISB10_MCID : std_logic_vector (1

downto 0):= "ZZ";

begin

End Process

SW11:process(ISB_Clk,Load_Addr,ISBC_ISB_DB_DIR,IS

BC_ISB_CB_DIR,ISBC_ISB_SB_DIR,LSB_AddrBus_IN0

3,LSB_DataBus03,LSB_CntlBus03,LSB_STATUSBUS03,I

SBC_TO_ISB_SBS,ISBC_TO_ISB_MCID,ISBC_TO_ISB

_BUSID)

variable SISR11 : std_logic_vector (2 downto 0):= "00Z";

variable ISBC_TO_ISB11_MCID : std_logic_vector (1

downto 0):= "ZZ";

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 204

begin

End Processs

6.2 RTL Modeling of Latch Box

Port (

LBx_Clk_in : in STD_LOGIC;

LBx_TriStateBuffer_En : in STD_LOGIC;

LBx_LAdd_in : in STD_LOGIC_VECTOR (15 downto 0);

LBx_LAdd_Out : out STD_LOGIC_VECTOR (15 downto

0);

LBx_LData_In_LGSB : in STD_LOGIC_VECTOR (7

downto 0);

LBx_LData_Out_LGSB : out STD_LOGIC_VECTOR (7

downto 0);

LBx_LData_In_GSBL : in STD_LOGIC_VECTOR (7

downto 0);

LBx_LData_Out_GSBL : out STD_LOGIC_VECTOR (7

downto 0);

LBx_Latch_DB_DIR : in STD_LOGIC;

LBx_LStatus_In_LGSB : in STD_LOGIC_VECTOR (1

downto 0);

LBx_LStatus_Out_LGSB : out STD_LOGIC_VECTOR (1

downto 0);

LBx_LStatus_In_GSBL : in STD_LOGIC_VECTOR (1

downto 0);

LBx_LStatus_Out_GSBL : out STD_LOGIC_VECTOR (1

downto 0);

LBx_Latch_SB_DIR : in STD_LOGIC;

LBx_LCtrl_In_LGSB : in STD_LOGIC_VECTOR (5

downto 0);

LBx_LCtrl_Out_LGSB : out STD_LOGIC_VECTOR (5

downto 0);

LBx_LCtrl_In_GSBL : in STD_LOGIC_VECTOR (5

downto 0);

LBx_LCtrl_Out_GSBL : out STD_LOGIC_VECTOR (5

downto 0);

LBx_Latch_CB_DIR : in STD_LOGIC

);

Fig -8: RTL Schematic of latch Box

7. RESULT

7.1 Utilization Graph

Fig -9: Utilization Graph

7.2 Utilization Table

Table -1: Utilization Table

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 205

7.3 Behavioral Simulation of Switch Box

7.4 Synthesis Report

7.5 DRC Report

7.6 Implementation Report

7.7 Timing Report

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 206

7.8 Power Report

7.9 Power Summary (Graph)

Fig -9: Power Summary

7.10 Implemented Design

Fig -10: Implemented Design

8. CONCLUSIONS

In the above result, architecture of intelligence switch box

for bus arbitration and its synchronization for multi

microcontroller embedded system on programmable chip for

address bus, data bus, control bus and status bus is

successfully done.

Also the algorithm for synchronization of address bus, data

bus, control bus and status bus for multi-microcontroller

embedded system on programmable chip at a master clock

frequency of 10-12 MHz for all microcontrollers and slave

clock frequency of 100 MHz for tri-state buffers is

proposed.

The proposed algorithm and techniques are as:

Algorithm:

Switch 00: Propagation delay(Pd)+Constant timing

delay(Ctd)

Switch 01: Propagation delay(Pd)+Constant timing

delay(Ctd)

Switch 10: Propagation delay(Pd)+Constant timing

delay(Ctd)

Switch 11: Propagation delay(Pd)+Constant timing

delay(Ctd)

Techniques:

Switch (0-3): Number of NOT Gate (Pd)+Constant Timing

Delay (Ctd)

Switch 00: 0 (Pd) + 1ns (Ctd)

Switch 01: 3 (Pd) + 3ns (Ctd)

Switch 10: 8 (Pd) + 5ns (Ctd)

Switch 11: 13 (Pd) + 7ns (Ctd)

Hence, the proposed algorithm and techniques getting

verified and tested for global bus synchronization using

multi-clock and multi phases DLL (Delay Lock Loop).

ΔPdsw0-1=3ΔCtdsw0-1=2ns
ΔPdsw1-2=5ΔCtdsw1-2=2ns
ΔPdsw2-3= 5ΔCtdsw2-3=2ns

The prototyping & verification has been done using

following tools & technology by considering various design

constraints:

Software operating environment:

 Operating System: UBUNTU 12.04 LTS

 Hardware Design Software: Vivado 2013.4

 Modeling and Simulation Software: Vivado

2013.4, ISim

 Synthesis Software: Compiler-II

 Static Timing Analyzer: Prime-Time

 Power Analyzer: XPA

 Power Estimator: XPE

Hardware Prototyping Environment:

 FPGA Device: Zynq-7000 (Ultra-Fast and Ultra-

Low-Power)

 Zynq-7000 FPGA Device Series: xc7z020clg484-1

 Device Technology: 28nm

 Device Category: General Purpose

 Clock Frequency: 50 Hz to 1GHz

 Speed Grade: -1

 No. of Pins: 484

 Operating Voltage: 1.16 V

 Operating Temperature: -20
0
 C to 80

0
 C

 Operating Clock Frequency: 10MHz and 15-20

MHz

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 207

REFERENCES

[1] Benini, L. and De Micheli, G.,2002. Networks on

Chips: A new SoC paradigm. IEEE Computer,

35(1), 2002; 70-78.

[2] Terry Tao Ye 2003. On-Chip Multiprocessor

Communication Network Design And Analysis

PhD thesis, Stanford University.

[3] Beltrame G., Sciuto, D., Silvano. C., Paulin, P.and

Bensoudane,E.,2006. An application mapping

Methodology and case study for multi-processor on

–chip architectures.Procceding of VLSI SoC 2006.

16-18 October 2006, Nice.France 146-151.

[4] T. S. Rajesh Kumar 2008. On-Chip Memory

Architecture Exploration of Embedded System on

Chip PhD thesis Supercomputer Education and

Research Centre Indian Institute of Science,

Bangalore, India.

[5] Xue, L., Ozturk, O., Li.F. Kandemir, M. and Kolcu.

I.,2006.Dynamic partitioning of processing and

memory resources in embedded MPSoC

architectures .Proceeding of DATE 2006 ,6-10

March 2006, Munich,Germany, 690-695.

[6] Benini L. and De Micheli, G., 2006. Networks on

Chips: Technology and tools. Morgan Kaufmann,

San Francisco, 2006, ISBN-10:0-12-370521-5.

[7] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F.

Fummi, M. Poncino, "SystemC Cosimulation and

Emulation of Multiprocessor SoC Designs", IEEE

Computer, Volume: 36 Issue: 4, April 2003.

[8] F. Poletti, D. Bertozzi, A. Bogliolo, L. Benini,

"Performance Analysis of Arbitration Policies for

SoC Communication Architectures", Journal of

Design Automation for Embedded Systems,

pp.189-210, Vol. 8, June/Sep 2003.

[9] A novel on-chip communication network

.Proceeding of International Symposiumon System-

on-Chip, 16-18 November 2004.

[10] Advance Computer Architecture, Parallelism,

Scalability, programmability by Kai Hwang.

[11] Ha, S., 2007. Model-based programming

environment of embedded software for MPSoC.

Proceeding of ASP-DAC’07, 23-26 January 2007,

Yokohamma, Japan, 330-335.

[12] Jerraya, A. and Wolf W., 2005. Hardware-software

interface codesign for embedded systems.

Computer, 38(2), February 2005; 63-69.

[13] Jerraya, A., Bouchhima, A and Petrot, F., 2006.

Programming models and HW/SW interfaces

abstraction for Multi- Processor SoC. Proceeding

of DAC 2006 .San Francisco.USA, 280-285.

[14] Angiolini, F., Ceng, J., Leupers, R., Ferrari, F.,

Ferri, C., and Benini, L. 2006. An integrated open

framework for heterogeneous MPSoC design space

exploration. In Proceedings of the Design,

Automation and Test in Europe (DATE'06), 1145-

1150.

[15] Erbas, C. 2007. System-level modeling and design

space exploration for multiprocessor system-on-

chip architectures. PhD thesis, Amsterdam

University Press, Amsterdam, the Netherlands.

[16] Jia, Z. J., Pimentel, A. D., Thompson, M., Bautista,

T., and Nunez, A. 2010. NASA: A generic

infrastructure for system-level MPSoC design

space exploration. In Proceedings of the IEEE 8th

Workshop on Embedded systems for Real time

Multimedia, 41-50.

[17] Jia, Z. J., Bautista, T., Nunez, A., Guerra, C., and

Hernandez, M. 2008. Design space exploration and

performance analysis or the modular design of

CVS in a heterogeneous MPSoC. In Proceedings of

the Conference on Reconfigurable Computing and

FPGA (ReConFig'08). 193-198.

[18] Martin, G. 2006, Overview of the MPSoC design

challenge. In Proceedings of Design Automation

Conference (DAC'06).

BIOGRAPHIES

He did his B. Tech. (Electronics and

Telecommunication Engineering) from

UPTU Lucknow, M. Tech. (pursuing) in

Electronics and Communication Engineering

from UPTU Lucknow. His research interests

include Embedded System Design, System-On-Chip Design.

He did his B. Tech. (Electronics and

Communication Engineering), M. Tech.

(Computer Science & Engineering),

PGD(VLSI Design), Ph.D doing in

Computer Science and Engineering. He is

IEEE affiliate of Circuit and System Society and

membership of IEEE organization. He is also ACM affiliate

of Embedded Computing System of Association of

Computing Machine. His research interests include

Embedded System Design, System-On-Chip Design, VLSI

Design, Advance Computer Architecture Design, RTOS

Design, MPSOPC Design, FPGA Design based Embedded

System.

