COMPARATIVE STUDY OF PRIVATE AND PUBLIC KEY **CRYPTOGRAPHY ALGORITHMS: A SURVEY**

Priti Bali¹

¹Assistant Professor, Computer Science Department, D.A.V. Institute of Management, Haryana, India

Abstract

Internet has revolutionized many aspects of our daily lives. Nowadays Internet is used for millions of applications. Many people depend on Internet for several activities like on-line banking, on-line shopping, on-line learning and on-line meetings etc. Huge amount of data travels over the network. Security of data over the network is a critical issue. Making a network secure involves a lot more than just keeping it free from programming errors. Network Security refers to the protection of valuable data against Interception, Interruption, Modification, Fabrication and Non-repudiation. Computer networks are inherently insecure so to protect data over the networks we need some mechanism. Cryptography came into existence to ensure data security. There are various threats to data: Backdoors, denial-of-service attack, direct-access attack, eavesdropping, exploits, indirect-attacks and social engineering and human-error. Cryptography provides protection against security threats. Cryptography means secret writing, the content of original text is scrambled to produce coded text and job of intruders becomes difficult. Secret-writing is the strongest tool of cryptography which protects the data. Cryptography is used to ensure confidentiality, integrity and availability of data by using private and public key cryptography algorithms. Private and Public key algorithms are used to transform original (readable) messages into unreadable jumbles. This paper describes the comparison of Private (symmetric) and Public (asymmetric) key algorithms.

Keywords: Plain Text, Cipher Text, Key, Encryption, Decryption, Intruder, Cryptanalysis, Cryptology, Cryptosystem,

Cryptography, DES, RSA.

1. INTRODUCTION

Use of Internet is growing rapidly. So, providing security to the data over networks has become a critical issue nowadays. Data over networks is insecure; it should be disclosed only to the intended recipients not to everyone. Data is more prone to attacks while transmitting in the network. Cryptography came into existence to provide solutions to all the issues of network security. Cryptography provides security to data while it is in network. It makes the messages immune to various attacks by converting the original message into coded message. Encryption is a process which is used for converting the original message into disguised message at the sender end. Various cryptography algorithms (private and public) are available which are used for concealing the content of message from all except the sender and the receiver.

1.1 Basic concepts of Cryptography

Plain text: Plain text is the message that a person wants to communicate. It is the original message which is to be encrypted at the sender end.

Cipher text: Cipher text is the message that is not comprehensible to anyone. It is the coded message which is to be decrypted at the receiving end.

Intruders: Intruders alter the message with wrong intentions. Intruders intercept, interrupt and fabricate the original messages and send their own disguised messages.

Encryption: Encryption is the process of converting Plain text into Cipher text. It requires Encryption algorithm and a key. The best method for protecting the confidentiality of information transmitted over wireless networks is to encrypt all wireless traffic. The most effective way to secure wireless network from intruders is to encrypt, or scramble, or disguise, communications over the network. Most wireless routers and access points have a built-in encryption mechanism [1].

Decryption: decryption is the process of converting Cipher text into plain text. It requires Decryption algorithm and a kev.

Key: Key operates on the plain text and converts it into cipher text. The real secrecy of cryptography is in the key. It is used for both processes: Encryption Process and Decryption Process. Key could be a number, function or an algorithm. Keys perform the transformations. For example: ABC (plain text) becomes DEF (cipher text) by applying a key. (The key is: shift all the letters by 3)

Cryptanalysis: Cryptanalysis means "code breaking". Art of breaking cipher text is known as cryptanalysis.

Cryptology: The art of formulating ciphers (cryptography) and breaking ciphers (cryptanalysis) is collectively known as cryptology.

Cryptography: Cryptography means "code making", it is a process of converting plain text (original message) into cipher text (coded message). This message transformation is done to make messages secure and immune to attacks over the network.

Cryptosystem: The system which is used to implement cryptography is known as cryptosystem.

1.2 Cryptography provides Protection against the

following Security Threats:

Interception: Interception happens when an unauthorized user gain access to valuable data. In this case, the protection is aimed to ensure confidentiality of the data.

Interruption: Interruption happens when data become unavailable, unusable or destroyed. In this case, the protection is aimed to ensure availability of data.

Modification: Modification means some unauthorized user has altered the data. In this case, the protection is aimed to ensure integrity of data.

Fabrication: Fabrication happens when an unauthorized person inserts forged data in a file. In this case, the protection is aimed to ensure authenticity of data.

Non-Repudiation: Non-Repudiation is a way to guarantee that the sender of a message cannot later deny having sent the message and that the recipient cannot deny having received the message. Non-Repudiation can be achieved by the use of digital signatures, confirmation services, time stamps and unique biometric information [2].

Cryptography is used for controlling all the security threats. Secret-writing (coded/cipher text) is the strongest tool because well-disguised data cannot be read, modified and fabricated easily. Different types of algorithms are used for converting Plain text (original message) into Cipher text (coded message).

1.3 Cryptography Algorithms can be classified into

Two Categories:

- Private key cryptography algorithms
- Public key cryptography algorithms

1.3.1 Private Key Cryptography Algorithms:

Private Key algorithms are also known as symmetric key algorithms. In symmetric key algorithms, encryption and decryption processes are performed using the same key. It is also known as conventional encryption and decryption [3]. In private key algorithms, encryption and decryption keys are mathematically related (usually inverse of each other). Private key algorithms are efficient and take less time to encrypt messages. These algorithms are used to encrypt and decrypt long messages because size of key is small.

1.3.2 Public Key Cryptography Algorithms

Public key algorithms are basically used for key distribution. Public key algorithms are also known as asymmetric key algorithms. In asymmetric key algorithms two keys are used: A private key and a public key. Public key is used for encryption and private key is used for decryption. Public key is known to public and private key is only known to user. So there is no need to distribute the keys before transmission [4]. In this type of algorithms it is very difficult to derive one key from the other (means decryption key is very difficult to derive from the encryption key). In asymmetric algorithms, public keys are used to encrypt the message and private keys are used to decrypt the message.

2. DES (DATA ENCRYPTION STANDARD)

DES was designed by IBM in 1977. DES is a Private (symmetric) key cryptography algorithm. In DES, size of input block is 64-bits and key is 56-bits long. Same key is used for encryption and decryption. DES comprises various operations: mixing of bits, substitution, exclusive OR, S-boxes, straight permutation and expansion permutation [5].

[6] Source: International Journal of Advanced Research in Computer Science and Software Engineering (IJARCSSE)

Steps involved in DES algorithm are:

(i) Inputs of DES are 64-bits plain text and 56-bits key. Output of DES is 64-bits cipher text. In DES,

block of plain text is converted into block of cipher text.

- Processing of block: Transposition is applied to 64bits plain text. This process is called keyless initial permutation.
- (iii) Processing of key: 64-bits key provided by the user is reduced to 56-bits by removing the parity bits (8, 16, 24, 32, 40, 48, 56 and 64). Split the key into two halves of 28-bits each. After this, circular left shifts are applied on both halves. Then by applying compression permutation 56-bits key is reduced to 48-bits. This 48-bits key is used for encryption. This component is called key processor sub component. It provides different set of 48-bits for 16 rounds means all the 16 complex round ciphers use a different key derived from the original key.
- (iv) Split the block produced in step (ii) into two halves of 32-bits each.
- (v) Expansion permutation is applied to one half to increase its size to 48-bits.
- (vi) XOR operation is applied to 48-bits of plain text produced in step (v) and 48-bits fetched from key processor sub component in step (iii).
- (vii) Output of step (vi) is fed into the S-box which reduces the 48-bits block into 32-bits block.
- (viii) Output of step (vii) is subjected to straight permutation for changing the order of bits.
- (ix) Again XOR operation is applied to the output of step (viii) and other half of the block produced in step (iv).
- (x) The two data halves are then swapped and become the input for the next round
- (xi) Cipher text is obtained after completing 16 rounds and by applying final permutation (reverse of initial permutation) [7].

For decryption, same process is used but in reverse order. DES algorithm is widely used for better security. Security depends heavily on S-boxes.

3. RSA (RIVEST, SHAMIR, ADLEMAN) ALGORITHM:

RSA was discovered in 1978. RSA is a Public (asymmetric) key cryptography algorithm; it is named after the initials of its discoveres, Ron Rivest, Adi Shamir and Len Adelman in 1977. It is the most popular asymmetric key cryptographic algorithm which is used to provide both secrecy and digital signature. It uses the prime numbers to generate public and private keys based on mathematical calculations and multiplying large numbers together [8]. Steps involved in RSA algorithm are generation of public and Private keys, Encryption Process, Decryption Process.

Generation of Public and Private Keys

Following steps are used for generating keys:

Choose any two prime numbers say p & q. (p & q cannot be divided by any other number except 1 and itself). Calculate n, $n = p \ge q$. Calculate another number Ø also known as

Euler's totient function. Value of $\emptyset = (p-1) \ge (q-1)$. Now assume a number e such that d $\ge (p-1) \ge (q-1)$. Now of e should lie between 1 and \emptyset . Number e should be a prime number. Number e and \emptyset should be co-prime means e and \emptyset are not divisible by any other number except 1 or in other words g.c.d. of e and \emptyset should be 1. Now calculate the value of d by using extended Euclidean algorithm's table method. After calculating the value of d, public keys (e and n) are announced to the public and private keys (d and \emptyset) are kept secret.

Encryption process:

Now anyone can send a message by using public keys (e and n). Plain text (Original message) is converted into Cipher text (scrambled message) by using the following formula:

$$C = P^e \pmod{n}$$

Decryption process:

Cipher text is converted into Plain text by using private key d. Cipher text (scrambled message) is converted into Plain text (original message) by using the following formula:

$$\mathbf{P} = \mathbf{C}^d \pmod{\mathbf{n}}$$

Modular exponentiation is used for Encryption and Decryption process.

RSA algorithm requires complex computation and hence it is very slow. In Public key algorithms, the underlying modular exponentiation and factoring large numbers into prime numbers depend on multiplication and division, which are inherently slower and requires a lot of processing power.

4. COMPARISON OF PRIVATE AND PUBLIC

KEY CRYPTOGRAPHIC ALGORITHMS:

Conceptual comparison of DES and RSA:

Factors	DES (Private Key	RSA (Public	
	Algorithm)	Key	
		Algorithm)	
Message Length	Suitable for long	Suitable for	
	messages	short messages	
Data rate	Fast Slow		
Requirement of	Less memory space	More memory	
memory space	required	space required	
Encryption	Fast	Slow	
Process			
Descrition	Dest	<u></u>	
Decryption	Fast	Slow	
Process			
Type of	Symmetric	Asymmetric	
algorithm (or			
cryptography)			
Speed of	Fast	Slow	
computation			
Complexity	O(logN)	O(N3)	
Security	Moderate	Highest	
Nature	Closed	Open	

X7 1			
Vulnerabilities	Brute Forced, Linear	Brute Forced	
(or weaknesses)	and Differential	and Oracle	
~ ^	cryptanalysis attack	attack	
Cause of	Weak key usage	Weak	
vulnerability			
Secure services	Confidentiality	Confidentiality,	
		Integrity, Non-	
		repudiation	
Job of intruder	Easy	Difficult	
(or Hacker)	Deduction of key is		
	based on guesses and		
	knowledge of		
	language. Key could		
	be derived by Hit and		
	trial or by		
	recognizing patterns		
	or by combination of		
	guesses, strategy and		
	mathematical skill.		
Block size	64 bits	Minimum 512	
		bits	
Power	Low	High	
consumption			
1			
Dounda	16	1	
Thursday	10 March 11	I I	
Inrougnput	very nign	LOW	
Confidentiality	High	Low	
Software	Fast (DES 1s at least	Slow	
Implementation	100 times faster than		
	RSA)		
Hardware	Fast (DES is between	Slow	
Implementation	1,000 and 10,000		
	times faster		
	(depending on the		
	implementation) than		
	RSA)		
Encryption and	Different	Same	
Decryption			
algorithm			
Cryptanalysis	Differential method	Product	
method		factorization	

Key-Based comparison of DES and RSA:				
Factors	DES (Private Key	RSA (Public Key		
	Algorithm)	Algorithm)		
Relationship	Encryption and	Encryption and		
between	Decryption keys	Decryption keys come		
Encryption and	are inverse of each	in pairs.		
Decryption Keys	other.	$P = D(K_D, E(K_E, P))$		
	$\mathbf{P} = \mathbf{D}(\mathbf{K}, \mathbf{E}(\mathbf{K}, \mathbf{P}))$			
Derivation of	Easy	Difficult (almost		
Decryption key		impossible)		
from Encryption				
key				
Key Distribution	Problematic (not as	Simple (widely used		
	popular as RSA)	for key distribution)		
Type of key	Private or Secret	Public		
Key Size	56 bits	>1024 bits		
Key	Key transportation	Key transportation is		

transportation (or	is necessary	not necessary (the	
transmission)	because sender and	biggest advantage of	
	receiver both use	public key	
	the same key.	cryptography is the	
		secure nature of	
		private key, it never	
		needs to be transmitted	
		or revealed).	
Sharing of key	Difficult (in the	Simple (problem of	
(or key	world of Internet,	key sharing can be	
exchange)	the communicating	solved by using RSA	
	parties may never	because it uses two	
	meet and converse	keys: public and	
	except over the	private. Public key is	
	network so how do	announced by the	
	they share key and	receiver and is	
	communicate).	available on the web	
		page of receiver).	
Ways used for	Telephone lines are	Public key is available	
key sharing	used which are	on the web page of the	
	prone to	receiver. Sender uses	
	eavesdropping.	this public key to	
		encrypt the message.	
Key disclosure	Key is not	Key is disclosed on	
	disclosed publicly.	the web.	
Key	Difficult	Easy	
management			
Key deposit	Needed	Needed	

Comparison of DES and RSA on the basis of Encryption
and Decryption Time:

S. No.	Algorithm	Packet	Encryption	Decryption
	-	Size	Time (Sec)	Time (Sec)
		(KB)		
1	DES	153	3.0	1
	RSA		7.3	4.9
2	DES	118	3.2	1.2
	RSA		10.0	5.0
3	DES	196	2.0	1.4
	RSA		8.5	5.9
4	DES	312	3.0	1.6
	RSA		7.8	5.1
5	DES	868	4.0	1.8
	RSA		8.2	5.1

[9] Source: International Journal of Science and Research (IJSR)

From the above table it is clear that RSA takes more time for Encryption and Decryption than DES. Hence, Public key algorithms are slower than Private Key algorithms.

5. CONCLUSIONS

Security of any algorithm is highly based on the length of the key being used. Private and public key algorithms have their own advantages and disadvantages. Private key algorithms require less memory than Public key algorithms. Computation speed of Private key algorithms is much faster than Public key algorithms. Because of the amount of computations involved, Public key algorithms are very slow and are useful only for specialized tasks. Private key encryption is 10,000 times faster than the Public Key encryption because in Public Key algorithms, the underlying modular exponentiation and factoring large numbers into prime numbers depend on multiplication and division, which are inherently slower and requires a lot of processing power than the bit operations (addition, exclusive OR, substitution and transposition, shifting columns, shifting rows) on which Private key algorithms are based. Therefore, cryptographers use Private key algorithms for frequent tasks where slow operation is a major problem and Public key algorithms are reserved for specialized, infrequent uses, where slow operation is not a problem. Key distribution is simple in public key algorithms whereas it is complex in Private key algorithms.

So, for providing better services, combination of Private and Public key algorithms can be used. Hybrid (means combination of Private and Public key algorithms) scheme can be used to provide better security in networks. For an instance, firstly use Public key algorithm for key distribution and then send data securely by using Private key algorithm. Public key algorithms are more often used as a solution to the key-management problem. For short messages, only public key algorithms can be used and for long messages, combination of Private and public key algorithms can be used for sending data securely. This combination of Private and Public key algorithms often capitalizes on the best features of each.

REFERENCES

[1]. Rosslin John Robles, Chang-hwa Hong, Tai-hoon Kim, "Wireless Network Security: Vulnerabilities, Threats and Countermeasures", International Journal of Multimedia and Ubiquitous Engineering, Vol. 3, No. 3, July, 2008.

[2]. Mrs.V.Umadevi Chezhian, Dr. Ramar, Mr. Zaheer Uddin Khan, "Security Requirements in Mobile Ad Hoc Networks", International Journal of Advanced Research in Computer and Communication Engineering, ISSN 2278 – 1021, Vol. 1, Issue 2, April 2012.

[3]. Gurpreet Singh, Supriya, "A Study of Encryption Algorithms (RSA, DES, 3DES and AES) for Information Security", International Journal of Computer Applications (0975 – 8887) Volume 67– No.19, April 2013.

[4]. Dr. Prerna Mahajan, Abhishek Sachdeva, "A study of Encryption algorithms AES, DES and RSA for security", Global Journal of Computer Science and Technology, Volume 13 Issue 15 Version 1.0 Year 2013.

[5]. Dr. Sudesh Jakhar, Aman Kumar, Sunil Makkar, "Comparative Analysis between DES and RSA algorithm", International Journal of Advanced Research in Computer Science and Software Engineering, Volume 2, Issue 7, ISSN: 2277 128X, July 2012.

[6]. Shaymaa Mohammed Jawad Kadhim Manjusha Joshi, Dr. Shashank Joshi, "Provide the Security to a Web Service by using DES Cryptography Algorithm", International Journal of Advanced Research in Computer Science and Software Engineering, Volume 3, Issue 10, October 2013 ISSN: 2277 128X, figure2. [7]. Prashanti.G, Deepthi.S, Sandhya Rani.K, "A Novel Approach for Data Encryption Standard Algorithm", International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249 – 8958, Volume-2, Issue-5, June 2013.

[8]. Mohit Marwaha, Rajeev Bedi, "Comparative analysis of Cryptographic Algorithms", International Journal of Advanced Engineering Technology, IV/III/July-Sept., 2013/16-18, E-ISSN 0976-3945.

[9]. B. Padmavathi, S. Ranjitha Kumari, "A Survey on Performance Analysis of DES, AES and RSA Algorithm along with LSB Substitution Technique", International Journal of Science and Research (IJSR) India Online ISSN: 2319-7064, Volume 2 Issue 4, April 2013, Table2.

BIOGRAPHIE

Priti Bali is working as an Assistant Professor in D.A.V. Institute of Management, Faridabad.