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Abstract 
Fault location and fault-voltage problems have been presented as a major challenge in electrical power system analysis, most of these 

methods uses voltage and currents measurements at either one ends or both ends of a transmission line. This work presents a fault-

location/fault-voltage problems. An improved fault location model (IFLM) are developed to search for fault location in a long 

transformation line say (200 mile),  thereby determining a set of values for a set of unknown system state variables, based on certain 

criterion making use of the measurements mode from the system under consideration.  
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1. INTRODUCTION 

Fault location in a long transmission line (200 mile = 320km) 

using an improved fault-location model (IFLM) are described 

and presented. Many contributions have been made by 

different references based on: the use of voltage and currents 

phasor one terminal which is based on reactive power, use of 

voltage and currents phasor at both ends, use of three-phase 

analysis and which uses a least – square – estimate to obtain 

fault point distance, the method is to convert time domain and 

then use critical neutral network to estimate fault location. 

This work formulate and presents a model based on 

impedance matrix and estimation, based on impedance 

equation, that are applied on a transmission line to determine 

fault voltage/fault location. [1] 

 

2. ANALYSIS AND MODEL: THE PROPOSED 

MODEL (IFLM)  

Consider a transmission line as shown in fig. 1.0 for analysis. 

The three phase – source impedance matrices are Z
s1abc

 () 

and Z
S2abc

(). These are assumed to be known and equal the 

Thevenin equivalent system models of bus 1 and 2 

respectively. “L” is the length of the long-transmission line 

(200 mile = 320km). The transmission line has three-phase 

impedance Zabc/mile (formed by self and mutual impedance 

among phases). [2,3] 

 

 

That can be presented in the form: 3-phase [a b c] 

 



















ZccZcbZca

ZbcZbbZba

ZacZabZaa

Zabc  

- - - - - (1) 

Or  



















333231

232221

131211

123

ZZZ

ZZZ

ZZZ

Z  

 

 For a three – phase analysis this line would yield a bus 

impedance/admittance. The bus admittance matrix will 

take the form: 

 











2221

1211

ZZ

ZZ
Z Bus  -  - (2) 

 

Or  

 











2221

1211

YY

YY
YBus  -- - - (3) 
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 From equ. (2) the element is a matrix of Dimension 3 x 

3; as shown in fig. 2, the fault point considered as the 

third bus. The third bus is consider to be the faulted 

bus. Then the change in the bus voltages on all the 

three buses due to the fault can be obtained by the 

following equation: [4] 

 

 
 









































Fabc

bus

I

faultZ

V

V

V

0

0

3

2

1

   - - (4) 

 

 Similarly, a case when the reactance are not given, 

therefore it is convenience to obtain Z1Bus directly 

rather than inventing Y1Bus.  

 Also if Y0,Bus is singular and then Zo,Bus cannot be 

obtained from it. 

 Hence, in such conditions above, we can apply a simple 

technique of unit current – injections approach. [5,6] 

 That is for the 2-Bus in fig. 1.0 above, we can write the 

matrix equation relating voltage and currents, as:  

 



































2

1

2221

1211

2

1

I

I

ZZ

ZZ
V

V

 - (5) 

 

 Now injecting unit currents at bus 1 (that is I1, = 1, and 

I2 = 0) 

 

Then we have: 

ZII = V1 

 

Z21 = V2 -  (6) 

 

 Similarly, by injecting a units currents at bus 2 (that is 

I2 = 1, I1 = 0), then we have:  

 

Z12 = V1 

 

Z22 = V2 - (7) 

 

This, Zbus could be obtained directly by this idea: 

 




















22

11

2221

1211

VV

VV

ZZ

ZZ
Z Bus  - (8) 

 

Now, interpreting the parameters of equation (4) we have:  

[O]: null matrix of dimension is (3 x 1)  

 

IFabc: Three phase fault current at the faulted bus 3; dimension 

of IFabc is (3 x 1).  

 

Vi: Change in the three phase voltages of bus 1 due to the 

fault at bus three. 

 

Vi, dimensions (3 x 1). 

ZBusfault: Three phase bus-impedance matrix with the fault 

considered at bus three dimensions is (9 x 9) rewriting 

equation (4) we have: 

 

 
 
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
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Or  

 

 
 
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Similarly we have: 

 

 
 


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
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
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
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

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0
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I
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 In equation (4) YBusfault is the three-phase bus 

admittance matrix of dimension (9 x 9) which is equal 

to the inverse of ZBusfault   

 Each elements of YBus fault is a matrix of dimension (3 x 

3). 

 Bus admittance matrices are related to the physical 

configuration of the corresponding power system.  

 Elements of the Bus admittance matrix YBus (before 

fault) are known to us. 

 Now using the correction of the system in fig.2 due to 

fault condition; the elements of YBus fault can be related 

to the elements of YBus as given as: 

 



























333231

232221

131211

YYY

YYY

YYY

YBusfault  - (10) 

 

Where: 

 

1

1111
L

Y

L

Y
YY abcabc   - (11) 
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12Y   = Y21 = [0 ]
3 x 3

 -- (12) 

 

1

3113
L

Y
YY abc  - (13) 

 

2

2222
L

Y

L

Y
YY abcabc   -(14) 

 

2

3223
L

Y
YY abc   -(15) 

 

  1

21

33


 Zabc

L

Y

L

Y
Y abcabc

 --(16) 

 

Where:  

L1 and L2: Are the distances of the fault point from bus 1 and 2 

respectively, is shown in fig 2. 

L: is the total length of the transmission line (200mile = 320 

km)  

Zfabc is the three – phase fault impedance matrix. 

Yabc: is the inverse of the three phase line impedance matrix 

per unit length gives as: 

 

 
  11 

 Zabc
Z

Y
abc

abc   (17) 

 

From equations (9, 10, 11, 12, .....16) the following equation 

can be formulated, but we can recalled that; 

 

 
 
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












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Then,  

 

 
























3

2

1
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V

V

V

YO Bus  

Or  

 


















OOO

OOO

OOO

O 33  -- (18) 

 

 


























333231

232221
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YYY

YYY

YYY

Y
faultBus   (19) 

 

3,2,1

3

2

1

Busatchange

V

V

V

























  (20) 

 

Where: 

1

1111
L

Y

L

Y
YY abcabc   

12Y   - - - - - 

13Y   - - - - - 

22Y   - - - - - 

23Y   - - - - - 

33Y   - - - - - 

 

This implies that:   

 

  1

1

11133 V
L

Y
V

L

Y
YO abcabc 










3

1

V
L

Yabc   - - - (21) 

 

  3

2

2

2

22233 V
L

Y
V

L

Y
V

L

Y
YO abcabcabc 










 - - - (22) 

 

Variable L1 and L2  = L - (23) 

 

 Since voltages at bus 1 and 2 are continuously 

measured, therefore 21 VandV   are known 

equation. 

 The unknown equation (21, 22, and 23) are the fault 

voltage ( )3V and fault location are: (L1 and L2) 

respectively. 

 However, we can determined and obtained the 

formulation of fault location (L1) as follows: 

 Invoking and rewriting equation (21) and (22) into 

another form we have: 
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111 V
L

Y
Y abc 








  = 

abcabc Y
L

V
Y

L

V

1

3

1

1 



abcYV

L
V

L 







 3

1

1

1

11

 - - - - (24) 

 

or 

 

abcYV
L

V
L 








 3

1

1

1

11
 = 111 V

L

Y
Y abc 








  

 

 Then divide through by Yabc:  

 

abc

abc

abc

abc

Y

V

L

Y
Y

Y

Y
V

L
V

L

1
113

1

1

1

11 



















 - - - - (25) 

 

This implies: 

 

111

1

3

1

1

1

11
V

L

Y
YYV

L
V

L

abc

abc 



















 

 

That is; 

 

111

1

3

1

1

1

11
V

L

Y
YYV

L
V

L

abc

abc 










 

 

111 V
L

Y
YZ abc

abc 







  

 

1113

1

1

1

11
VY

L

Y
ZV

L
V

L

abc

abc 







  -

 - - (26) 

 

 Similarly, we can also write as: 

222

1

3

2

2

2

11
V

L

Y
YYV

L
V

L

abc

abc 










 

 

Also, 

 

2223

2

2

2

11
VY

L

Y
ZV

L
V

L

abc

abc 









 - - - - (27) 

 

 Further rewriting equation (26) and (27) we have:  

 

1113

1

1

1

11
VY

L

Y
ZV

L
V

L

abc

abc 


























 - - - - (28) 

 

 Similarly  

 

2223

2

2

2

11
VY

L

Y
ZV

L
V

L

abc

abc 


























 - - - - (29) 

 

This implies that: 

 

11131 )1()1( VY
L

Y
ZSVXVX abc

abc 







  

 - - - - (30) 

That is; 

 

SVY
L

Y
Z abc

abc 







 111  - - -

 - - - - (31) 

 

Similarly; 

 

22232 )1()1( VY
L

Y
ZKVYVY abc

abc 









 - - - - (32) 

 

That is: 

 

K 222 VY
L

Y
Z abc

abc 







  (33) 

 

To solve for L1, then go back grouping equation (30) and (32) 

we have  

 

    )1(11 31 SVXVX  - - (34) 

 

)1()1()1( 32 KVYVY  -- (35) 

 

This implies: 

 That is, the total length of the transmission line L is 

given as: 

 

L = L1 + L2 - (35) 
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But, 

21

1
,

1

L
Y

L
X    

 

=> 
Y

L
X

L
1

,
1

21   -- (36) 

 

=> 
YX

L
11

  

 

Xy

XY
L


  

 

=> L XY = Y + X 

 

LXY - Y = X 

 

1


LX
XY  - (37) 

 

 Further expressing equation (34) and (35), we can 

write; 

 

)1()1()1( 31 SVXVX   - (34) 

 

)1()1()1( 32 KYY   - (35) 

 

 By mathematical manipulation principle their 

operation; 

 

)1()1()1( 31 VSV  - (36) 

 

)1()1()1( 32 VYKVY  - (37) 

 

From 36: )1(
)1()1(

3
1 V

X

SVX



 (38) 

 

From 37: )1(
)1()1(

3
2 V

Y

KVY



 (39) 

 

 Since, X and Y can be expressed in term of V3 then, 

we can equate them to be equal: 

 

Y

KVY

X

SVX )1()1()1()1( 21 



  (40) 

 

 

 Case 1: for L
YX


11

 

 

L
Xy

XY



 

 

LXYYX   

 

X = Lxy – y 

 

X = Y (LX -1) 

 

1


LX
XY  -  (41) 

 

 Cases 2: For: 
YX

11
   =  L 

 

L
Xy

XY



 

 

X + Y  = Lxy 

 

Y = Lxy – X 

 

Y = X(Ly – 1) 

 

1
Ly

y
X   - (42) 

 

 Case 3: 

For L = L1 + L2 = Length of transmission line 

 

 Case 4: Now recalling our previous equation (40): 

 

Y

KVY

X

SVX )1()1()1( 21 



 -- (40) 

 

 Substituting values from case 2: 

 

1


XL

X
Y  into equation 40 

 

We have: 

That is keeping (LHS) and substituting  

 

1


XL

X
Y  in the (RHS), we have: 
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1

)1(
1)1()1( 2

1








XL

X

KV
XL

X

X

SVX
  - (43) 

 

 Now cross – multiplying to the (LHS) and (RHS): 

 





















 1
)1()1(

1
1

XL

X
SV

XL

X
X  

= XKV
XL

X
X ).1()1(

1
2 










 -- (44) 

 

 Bringing the term of voltage for (V1 and V2): 

 

)1(
1

.)1(..
1

21 V
XL

X
XVX

XL

X






 

 

= )1(.)1(.
1

KXS
XL

X



 - (45) 

 

 Grouping them together: 

 

  )1(.)1(.
1

)1()1(.
1

21 KXS
XL

X
VVX

XL

X






 - - - (46) 

 

 Dividing through by 
1XL

X
 to both side of the 

equation:   

 

  )1(.

1

1)1()1(.

1

1
21 S

XL

X
XL

X

VVX

XL

X
XL

X








 

 

-

1

.

XL

X

XK
 - - (47) 

 

Then we can continue as follows:  

 

  



 )1()1(

1

1
21

2

VVX

LX

XL

X

 

X

XL
XK

X

XL
S

XL

X 1
...

1
)1(.

1








  (48) 

=> X(V1(1) - V2(1)) = S(1) – K(XL-1)  

=> X(V1(1) - V2(1)) = S(1) – KXL + K (1) -(49) 

 

 Expanding the RHS:  

 

X(V1(1) - V2(1)) = S(1) – X LK(1) +  K(1) - (50) 

 

 Collecting like terms of X and grouping them, we have: 

 

X(V1(1) - V2(1)) + XLK(1) = S(1) + K(1) 

 

This implies that:  

 

X[V1(1) - V2(1) + LK(1)]  = S(1) + K(1)  (51) 

 

)1()1()1(

)1()1(

21 LKVV

KS
X




  

 

But 

21

1
,

1

L
Y

L
X   from our relationship, in case, 1, 2, 

3, respectively.  

 

Then; L1 = 
X

1   

 

)1()1()1(

)1()1(1

211 LKVV

KS

L 


  

 

)1()1(

)1()1()1( 21
1

KS

LKVV
L




  - (52) 

 

 Similarly, repeating the same technique for the fault 

location (L2). Since equation (10 – 16), L1 and L2
 
are 

the distances
 
of the fault point – location from Bus 1 

and 2 respectively as shown in fig. 2, above, where L is 

the total distance of the long-transmission line.  

 Recalling, the equating on case 1, case 2, case 3 and 

case 4 respectively for this considerations.  

 

That is: 

Case 1  - Y =  
 

1LX
X

   

 

Case 2  -

 

1

11






LY
YXorLYX

 

 

Case 3 - L = L1 + L2  
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Case 4  - 
Y

KVY

X

SVX )1()1()1()1( 21 



 

 

 Similarity, in this case substituting, X = 
1LY

Y
  

into equation 40: 

 

Now keeping (RHS) and substituting into the (LHS): X =  

1LY

Y
 

 

Y

KVY

X

SVX )1()1()1()1( 21 



  from equation 

(40)   

 

Y
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Y )1()1(

1

)1()1(

1

21 















 (53) 

 

 Now cross – multiplying we have; 
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Y
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1
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


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
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= 

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







 1
).1()1(.

1
. 2

LY

Y
KV

LY

Y
Y  -(54) 

 

 Then grouping terms that change in V that is (V) 

together: 

 

21
1

)1(.
1
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Y
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Y
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



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1
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Y
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 Grouping them and factoring it out: 

 

1
).1()1())1()1(.(

1
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







 LY

Y
KYSVV

LY

Y
Y

 - - (56) 

 

 Divide through by 
1LY

Y
 to both side, we have: 
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 - (57) 

 

This means that: 
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- - - - - (58) 

 

This give us as: 

 

Y(V1(1) - V2(1)) = S(1) (Ly-1) – K(1) - (59) 

 

 Expanding the term and collecting terms of Y – 

together. 

 

Y(V1(1) - V2(1)) = LS(1) Y – S(1) – K(1) - (60) 

 

Then we continue as:  

 

Y(V1(1) - V2(1)) – LS(1)Y =  - S(1) – K(1)- (61) 

 

Simplifying further: 

 

Y[(V1(1) - V2(1)) – LS(1)] = - S(1) – K(1)- (62) 

 

Simplifying further again: 

 

Y[(V1(1) - V2(1) – LS (1))] = - S(1) – K(1)- (63) 

 

Making Y the subject of the expression we have: 

 

)1()1()1(

)1()1(

21 LSVV

KS
Y




  -   (64) 

 

 But from our relationship X = 

1

1

L
 and Y = 

2

1

L
 

 - - (65) 

  

)1()1()1(

)1()1(1

212 LSVV
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   (66) 
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    (67) 



IJRET: International Journal of Research in Engineering and Technology           eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org                                                                                      403 

 From our mathematical relationship, the parameters in 

the equation which defined S and K are given as: 

recalling from previous equation 30 and 33.  

 

S = XV1 (1) - XV3 (1)   - (30) 

= 111 VY
L

Yabc
Zabc 








    

 

And 

 

K = YV2 (1) - YV3 (1)  

 = 222 VY
L

Yabc
Zabc 








  (33)    

 

 Thus, the fault – location L1 and L2 are developed 

and modeled as: 
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Fig 1: 

 

  

  

 

 

 

 

 

 

Fig 1: Long transmission line considered for this analysis (long – line = 200 mile = 320 km). 

 

 

 

                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Transmission line with a fault (bus 3 introduced due to fault initiation). 

 

 Parameter data for the line are: R1 = 0.249168/mile 
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L1 = 0.00156277H/mile 

C1 = 19.469E – 9F/mile 

Ro = 0.60241/mile 

Lo = 0.0048303 H/mile 

Co = 12.06678E – 9F/mile   

 The source impedance are as follows: 

Sending End: 

Zs1 = 17.177+ j45.5285 

Zso = 2.5904 + j14.7328 

 - Receiving End: 

Zs1 = 15.31 + j45.9245 

Zso = 0.7229 +j25.1288  

 

3. RECOMMENDATIONS  

 However, it is requested and recommended that 

because of fault inevitability and contingency of 

occurrence of fault introduced into transmission line 

which in other words could drastically cause a large 

voltage – drop and could not be tolerated in practice.  

 In practice, line are therefore required to incorporate 

series capacitors to reduce series reactance and the load 

– current power factor which would increase from 0.9 

lag to near unity by the use of shunt capacitors or 

synchronous compensators at the receiving end. 

 The characteristic impedances Zo is also know as the 

surge impedance, when a line is terminated in its 

characteristic impedance, the power delivered is know 

as the natural load.  

 For a loss-free line under natural load conditions the 

reactive power absorbed by the line is equal to the 

reactive power generated, this mean that: 

 

XLI
X

V

c

2
2

  - - (70) 

 

And 

 

 
C

L
XCXLZ

I

V
o   - (71) 

 

 At this load V and I are in phase all along the line and 

optimum transmission conditions obtained. 

 However in Practice the load impedances are seldom in 

the order of Zo. values of Zo for various line voltages 

are as follows, values of the corresponding natural 

loads are shown in breakers: 132KV, 152 (50mw); 

275KV, 315 (240mw); 380KV, 295 (490mw).  

 The angle of the impedances varies between O and – 

15
0
. For underground cable Zo (characteristic 

impedance = surge impedance or is about one tenth of 

the overhead line value. 

 Parameter of transmission line: 

R  = Resisters/unit length  

L      = Inductance/unit length  

G = Leakage/unit length  

C = Capacitance/unit length  

Z = Impedance/unit length  

Y = Shunt admittance/unit length 

Z       = Total series impedance of the line 

Y       = Total shunt admittance of the line  

 Since Zo is the input impedance of an infinite length of 

the line, if any line is terminated in Zo its input 

impedance is also Zo. 

 The propagation constant (P) represents the changes 

occurring in the transmitted waves, as its progresses 

along the line,  measures the attenuation, and  

measure angular phase shift. i.e.  

 

P = ( + j). 

 

 Similarly for a loss free-line, P = jw  LC  and  =  

w  LC  with a velocity of propagation 3 x 

10
5
km/sec, the wave length of the transmitted voltage 

and currents at 50
c
/s is 6000km.  

 Thus lines are much shorter than the wave length of the 

transmitted energy.  
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