
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 464

HARDBACK SOLUTION TO ACCELERATE MULTIMEDIA

COMPUTATION THROUGH MGP IN CMP

Jimcy Babu
1
, Kavitha .V

2
, K.V.Ramakrishnan

3

1
M Tech, CMRIT, Bangalore

2
Ph D Scholar, Jain University

3
Professor

Abstract
Current multimedia applications are becoming more and more complex; thereby it increases workload for General purpose

processors (GPPs). This resulted in the advent of Chip multiprocessors (CMPs). In most of the cases CMPs were not fully utilized.

Hence, how to achieve the contemporary multimedia requirement like speed i.e. completion time, by using CMP became a

question.

In this project work a solution had been put forward to tackle the crisis. The idea behind the solution is the proper exploitation of

the parallelism thereby accelerating the multimedia computation in CMPs. To achieve the less completion time, four levels of

parallelism has been considered i.e. Data Level, Thread Level, Instruction Level and Memory Level called as Multi-Grain

Parallelism (MGP). POSIX thread concept is used to implement Data Level, Thread Level, Instruction Level and for Memory

Level, pre-fetch concept. To run, Linux based platform is required. Here UBUNTU 12.02 version is used.

This project also performs a comparison between serial computation and parallel computation at different levels, based on

completion time. The experimental results show that parallel computation consumes less time as compared to that of serial

computation. Thereby, making it viable for multimedia applications

Keywords: Chip Multiprocessor (CMP), Data Level Parallelism (DLP), Thread Level Parallelism (TLP), Instruction

Level Parallelism (ILP), Memory Level Parallelism (MLP), POSIX thread (p-thread), Pre-fetch.

--***--

1. INTRODUCTION

Advances in IC technology have led to billions of transistors

on chip keeping up with Moore’s law. The initial trend was

of CPU’s with wider instruction issue and instruction

execution involving prediction and speculation. This was the

superscalar approach which was argued against due to its

diminishing performance for increasing issue width due to

limited amount of parallelism in instructions in non-

scientific applications and the complex hardware needed.

Many factors both technological and marketing are driving

the semiconductor industry to implement multiple

processors per chip.

Hence instead of a complex superscalar processor, an

alternate approach, the Chip Multiprocessor (CMP) or

multi-core processor was proposed. The CMP combines

much simpler processors or cores on a single chip or die.

Each core is a complete processor unit itself and works as a

team with the other cores on chip. It is now proven that this

approach is the only way to build high performance

architectures and CMPs perform equal or better than the

superscalar approach.

Chip Multiprocessor- also called Multi-core

microprocessors or CMP for short are now the only way to

build high performance microprocessors, for a variety of

reasons. Large uniprocessor are no longer scaling in

performance, because it is only possible to extract a limited

amount of parallelism from a typical instruction stream

using conventional superscalar instruction issue techniques.

Along with the numerous opportunities of the CMPs, there

are also a lot of challenges that keep us from exploiting their

full potential. Numerous bottlenecks have appeared that

have to be dealt with before we can fully benefit from

CMPs. These bottlenecks have tapered off the performance

increase of CMPs in recent years [4].

The rest of the paper is organised as follows. Section 2

analyses the related work carried. Section 3 comprises of

methods for the parallel programming. Section 4, describes

the simulation result

2. RELATED WORK

For real-time multimedia applications, performance is the

key constraint. A fair comparison of energy must therefore

also consider performance. As a result, the energy of SMT

and CMP at the same performance is compared in [5]. The

complexity arises because each performance point can be

obtained by CMP and SMT using several combinations of

frequency and processor micro-architecture. For a CMP or

SMT with a given core architecture, varying the processor

frequency provides a continuum of performance points. Any

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 465

of these points could be achieved either as a fixed-frequency

design or in a system with DVS support. Data for CMP and

SMT systems were collected using all combinations of core

architectures and frequencies.

For all systems and workloads considered in [5] and for all

performance regions, CMP architecture gives the least EPI.

It is also found that the best SMT and the best CMP

configuration for a given performance target have different

architecture and frequency/voltage. Therefore, their relative

energy efficiency depends on a subtle interplay between

various factors such as capacitance, voltage, IPC, frequency

and the level of clock gating, as well as workload features.

Although CMP shows a clear energy advantage for four-

thread or higher workloads, it comes at the cost of increased

Silicon area. Therefore paper investigated a hybrid solution

where a CMP is build out of SMT cores, and found it to be

an effective compromise.

The work in [6], relates the techniques to increase

Instruction level parallelism by improving balanced

scheduling with compiler optimization. This study combines

Balanced Scheduling with three compiler optimization:

Loop Unrolling, Trace Scheduling and Locality Analysis.

The researchers “Huiyang Zhou and Thomas M. Conte”

developed a method to improve Memory Level Parallelism

[7]. This technique parallelizes sequential cache misses

speculatively. Value prediction has great potential to

enhance MLP by overlapping sequential cache misses.

3. PARALLEL PROGRAMMING METHOD

The main objective is to accelerate the multimedia

application, thereby reducing the completion time. The

objective is accomplished by making use of the concept of

Multi-Grain parallelism (MGP) in the Chip Multiprocessor

(CMP). To exploit the different levels of parallelism, p-

thread notion is used.

POSIX Thread (p-thread) is a standard for programming

with threads and it defines a set of C-types functions and

constants. More widely, p-threads are a technique that a

program can spawn concurrent units of processing that can

then be consigned by the Operating System to multiple

processing cores.

Multithreading increases resource utilization by

multiplexing the execution of multiple threads on the same

pipeline. Clearly, the advantage of multithreading is

achieving the high speeds by allocating multiple threads to

multiple processing cores, as all cores of CPU or all CPU’s

if more than one is used operates at the same time.

This method exploits the parallelism from the following

levels: Data Level Parallelism, Instruction Level

Parallelism, Thread Level Parallelism and Memory Level

Parallelism.

3.1 Data Level Parallelism

In parallel computing environment, Data parallelism is a

form of parallelization of computing in multiple processors.

Data Parallelism focuses on distributing data across different

parallel computing nodes. The concept used to achieve Data

Level Parallelism is Single Instruction Multiple Data

(SIMD) architecture.

In a multiprocessor system executing a single set of

instructions (SIMD), data parallelism is achieved when each

processor performs the same task on different pieces of

distributed data. In some situations, a single execution

thread controls operations on all pieces of data. In others,

different threads control the operation, but they execute the

same code.

In this parallelism the simple ALU functions like addition

and multiplication are considered which are stored in a

register. The serial execution of the program is done by

dividing to tasks and its real time of execution is noted.

The parallel programming is done using POSIX threads

where the different tasks (addition & multiplication) are

divided into threads and these threads perform tasks

simultaneously thereby reducing the real time. Here the

main thread holds the control and wait until the other thread

execution is completed simultaneously.

A single thread performs the given tasks completely at a

time indicating SIMD (Single Instruction Multiple Data).

3.2 Thread Level Parallelism

In thread-Level Parallelism (TLP) instead of having to wait

for other threads, it has a capability that enables a program,

often a high-end program such as a data or web application

to work with multiple threads at the same time. Therefore

programs that support this ability are able to do a lot more

even under high levels of workloads.

Here we divide the tasks to different threads and one thread

is meant to perform a single task and other threads will

perform other tasks. The control is taken by the main threads

and waits for the rest threads to complete the tasks. The

serial version of the execution takes more time

comparatively than the parallel which can be observed very

clearly.

Hence here one can observe the efficiency of having

parallelism concept instead of sequential in multi-core

systems using POSIX threads. Comparatively Thread Level

Parallelism achieves the highest level of Parallelism

amongst other levels of parallelism.

3.3 Instruction Level Parallelism

The potential overlap among instructions is called

instruction level parallelism (ILP). It is a measure of how

many of the operations in a computer program can be

performed simultaneously. Here the superscalar technology

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 466

can be adapted for better utilisation of Instruction level

parallelism.

It deals with simultaneously performing of all the tasks at a

time. The same tasks are performed by threads where there

is no inter dependency of data.

Suppose consider,

A=(X*X) +(Y*Y) + (Z*Z)

Fig 1: Figure for Instruction Level Parallelism

In parallel executions, different tasks are executed

simultaneously. The instruction level parallelism is achieved

with real time analysis and comparison with sequential

execution is also noted.

3.4 Memory Level Parallelism

Memory Level Parallelism (MLP) is a term in computer

architecture. It refers to the ability to have pending multiple

memory operations at the same time, in particular cache

misses or translation look aside buffer misses. The concept

used to achieve Memory Level Parallelism (MLP) is the pre-

fetch technique.

There are two ways in which pre-fetching can occur:

 Initiated by hardware,

 Initiated by software.

In this implementation, software pre-fetch is used. Software

pre-fetching involves identifying when your application will

need a particular set of data, then using special pre-fetch

instructions to tell the processor to get this data in advance.

The time consumption for both without pre-fetch and with

pre-fetch was noted. There was a less time consumption

comparatively with using pre-fetch instructions.

Fig 2: Simple illustration for without pre-fetch and with pre-

fetch [internet]

Figure 2, explains about the concept used for Memory Level

Parallelism, both for with and without pre-fetch.

4. SIMULATION RESULTS

Table 1: Summary Table

Level of

Parallelism

Serial

Operation

(Seconds)

Parallel

Operation

(Seconds)

Data Level and

Thread Level

Parallelism

0.029 0.013

Instruction

Level

Parallelism

0.013 0.005

Memory Level

Parallelism

0.75 0.68

The table 1 shows the summary of the simulation result. It

shows the time taken to perform both serial and parallel

operation in Data Level Parallelism, Thread Level

Parallelism, Instruction Level Parallelism and pre-fetch in

Memory Level Parallelism.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 467

Fig 3: Summary Bar Chart for DLP_TLP and ILP

Fig 4: Summary Bar Chart for MLP

Bar Chart shows the time differences for different levels of

parallelism.

Figure 3 shows the bar chart for the obtained simulation

results for Serial computation and parallel computation for

Data Level, Thread Level and Instruction Level. Here the

Data and Thread levels are integrated which is shown as

DLP_TLP.

Figure 4 shows the bar chart for the simulation result for

Memory Level. Memory level is implemented using the pre-

fetch concept. It shows the time differences for with pre-

fetch and without pre-fetch operation. From the result, time

taken with pre-fetch is more as compared with without pre-

fetch.

5. CONCLUSIONS AND FUTURE SCOPE

In this implementation, different methods are implemented

to exploit different levels of parallelism. POSIX Thread

concept is used to implement the Data Level, Thread Level

and Instruction Level Parallelism. Instruction Level

Parallelism is based on superscalar architecture. Memory

level is achieved using the Pre-fetch concept. The simulation

results show that all the levels of parallelism can be

achieved.

The time difference for serial as well as parallel computation

is also compared. From the simulation result it is shown that

completion time is more for serial computation as compared

to that of parallel. Hence parallel computation can accelerate

multimedia application in Chip Multiprocessors.

As a future research, the following work can be performed;

integration of all the levels can be performed along with

extension to multiple processors on chip. It can be further

configured for different workloads especially in case of

multimedia application.

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my guide Mrs.

Kavitha. V, Ph D Scholar, Jain University for her timely

guidance and encouragement to make this project, a success

REFERENCES

[1]. Xiaoping Huang, Xiaoya Fan, Shengbing Zhang And

Liwen Shi, “Investigation On Multi-Grain Parallelism In

Chip Multiprocessor For Multimedia Application”,

proceeding of IEEE 2009, Computer School, Northwestern

Polytechnical University, China.

[2]. Man-Lap Li, Ruchira Scscnka, Sarita V. Adve, Yen-

Kuang Chen, Erid Debes, “The ALPbench Benchmark Suite

For Complex Multimedia Application”, Proceeding of the

2005 International Symposium On Workload

Characterization, October, 2005.

[3]. KunleOlukotun, LanceHammond of Stanford University

and James Laudon of Sun Microsystems, “Chip

Multiprocessor Architecture: Techniques to Improve

Throughput and Latency”, 2007.

[4]. Bushra Ahsan, Fatma Omara and Mohamed

Zahran,Department of Computer Science, “Chip

Multiprocessor: Challenges and Opportunities”,

INFOS2008, March 27-29, 2008 Cairo-Egypt.

[5]. Ruchira Sasanka, Sarita V. Adve, Yen-Kuang and Eric

Debes , “The Energy Efficiency of CMP v/s SMT for

multimedia workloads”, June 26–July 1, 2004, SaintMalo,

France, Copyright 2004.

[6]. Jack L.Lo and SusanJ.Eggers; “Improving Balanced

Scheduling with Compiler Optimization that Increase

Instruction Level Parallelism”, Department Of Computer

Science and Engineering, University Of Washington, 1995.

[7]. Huiyang Zhou and Thomas M. Conte, Department of

Electrical and Computer Engineering,“Enhancing Memory

Level Parallelism via Recovery-Free Value Prediction”,

June 23-26, 2003, SanFrancisco, California, USA,

Copyright 2003.

[8]. Kostas Bousias, Nabil Hasasneh, Chris Jesshope,

“Instruction-level parallelism through Micro threading- A

Scalable Approach to Chip Multiprocessor”, Computer

Journal, March 2006,49(21): 211-233.

[9] http://en.wikipedia.org/wiki/C_(programming_language)

Fetch B

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 468

[10].http://en.wikipedia.org/wiki/C++_(programming_langu

age)

[11]. http://en.wikipedia.org/wiki/ubuntu

[12]. http://en.wikipedia.org

