
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 385

IMPLEMENTATION OF LINUX BASED UART DEVICE DRIVER

Risma Rajan
1
, V. Venkateswarlu

2

1
Final Semester Student, M.Tech. – VLSI Design and Embedded Systems, Dept. of PG Studies, VTU Extension Centre,

UTL Technologies Ltd. Bangalore, India
2
Principal and Head of Department, Dept. of PG Studies, VTU Extension Centre, UTL Technologies Ltd. Bangalore,

India

Abstract
This paper deals with design, implementation and testing of device driver for a DUART TL16C2550 peripheral on a MDROADM

board. The MDROADM board is used in optical networks for switching the optical signals between the nodes. The MDROADM

board is designed with a MPC8308 PowerQUICC II Pro Processor as the main processor and the TL16C2550 peripheral is used

for extending the serial interface on the board. The MDROADM board runs an embedded Linux operating system.

The device driver for the DUART TL16C2550 is designed based on the customized interfacing with the MPC8308 PowerQUICC

II Pro Processor. The device driver is in compliance with Linux kernel V2.6.29.6

Keywords: Device Driver, Linux, embedded system, DUART, TL16C2550.

--***--

1. INTRODUCTION

Embedded systems are designed and developed to cater to a

specific application and are characterized by its hardware

and the software designed for the application[1]. The

hardware components consist of a main controller and

numerous peripheral integrated based on the system

requirements. The software running in the embedded system

provides the intelligence to it. The software running in the

system coordinates the functioning and usage of the various

hardware modules and implements core logic pertaining to

the target usage of the system.

Based on the complexity of the system, the software ranges

from a non OS based simple application to a well-structured

organization of software into operating system and user

applications. The operating system consists of the hardware

abstraction layer that is dependent on the architecture of the

main processor, a kernel that contains various system

management modules that manages the resources available

on the system and coordinates the execution of the

application and device drivers that manages access to

various peripherals on the system [1].

Device drivers are an important component in the embedded

system software as this layer controls the interaction

between the embedded hardware and software [2]. Device

driver development is a deeply involved task in an

embedded system design as it requires knowledge of the

hardware interfacing, memory map, details of the registers

of the hardware and its configuration.

This paper, deals with the design, implementation and

testing of device driver for a DUART TL16C2550

peripheral on a MDROADM board. The device driver for

the DUART TL16C2550 is designed based on Linux kernel

V2.6.29.6 and is designed based on the customized

interfacing with the MPC8308 PowerQUICC II Pro

Processor. The paper is organized as follows. In Section 2,

similar type of work carried out in the industry / academy is

discussed. Section 3 discusses the type of the embedded

system and the goal for this project. In Section 4, the design

and implementation of the DUART device driver is

discussed. In Section 5, the results obtained from the work

are discussed. Section 6, gives the conclusion of the work.

2. RELATED WORK

Customized embedded system based on Linux is popular in

the industry and academy.

Linux has become a very popular operating system in the

embedded domain, the reasons being - No licensing fee,

open source, Reliability, Scalability, Large programmer

base, Support, Portability [3]. The source code of the kernel

is open source; hence developers can customize the kernel

based on their requirements for the target system. Linux is

modular and scalable. This means that the kernel can be

recompiled to suit to the processor and the devices.

Embedded Linux based system has been used for

commercial digital TV system [4]. The advantages of using

Embedded Linux in the work are that Linux is open source

program, increases cost effectiveness and allows reusability

of device drivers and application programs. The role of the

Linux kernel for digital TV system is to provide effective

resource management in order to support a multi-

programming environment. The embedded Linux kernel is

modified to suit the system and device drivers are developed

for the entire system control.

In Linux, the device driver can be broadly classified as [5]

1. Character driver – for accessing sequential access

devices

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 386

2. Block driver – for accessing random access devices

3. Network driver – for interacting with the network

protocol stack.

A work on network device driver has been done for

CS8900A, a 16-bit Ethernet controller for a Linux operating

system based on ARM920T processor and implemented on

the S3C2410-S development platform [6]. The authors have

discussed implementation principle of embedded Linux

network drivers and discussed the design for the various

driver functions and sections of the code implemented.

3. BACKGROUND AND GOALS

The system referred in this paper is a Multi-Directional

Reconfigurable Optical Add/Drop Multiplexer

(MDROADM) card that is used for adding and dropping off

wavelengths from the optical network. The wavelength that

the card can selectively add or drop from the network can be

re-configured based on the prevailing network conditions.

MDROADM card contains the hardware and software

applications that can switch the wavelength based on the

runtime configuration. It also contains devices to monitor

the network conditions. Several such MDROADM card are

positioned in the optical network node and are controller by

a master controller. The MDROADM card communicates to

the master controller, via a serial bus as shown in Fig-1.

 MDROADM

Card

Master

Controller

MDROADM

Card

MDROADM

Card

Serial bus

Fig-1: ROADM communication with master controller [7]

The MDROADM card is equipped with a 32 bit MPC8308

PowerQUICC II Pro Processor as the main processor and

other components like the wavelength selective switch and

optical channel monitor that are interfaced with the main

processor. The card also contains a TL16C2550 DUART

chip interfaced with the MPC8308 PowerQUICC II Pro

Processor to extend the serial interfaces available on the

MDROADM card. The MDROADM card communicates

with the serial bus and hence the proper functioning of the

TL16C2550 DUART chip is critical for the overall

functioning of the MDROADM card.

The TL16C2550 DUART chip is interfaced with the

MPC8308 PowerQUICC II Pro Processor via the enhanced

Local Bus Controller (eLBC), Integrated Programmable

Interrupt Controller (IPIC) and General Purpose

Input/Output (GPIO) lines of the processor as shown in Fig-

2.

TL16C2550

 MPC 8308

Channel A
 Read / Write

Chip Select

Interrupt

Address

Data

Tx

Rx

eLBC

Channel B

Tx

Rx

IPIC

Read / Write

Chip Select

Interrupt

Address

Data

GPIO

Fig-2: MPC8308 and TL16C2550 interfacing

The MPC8308 PowerQUICC II Pro Processor runs a Linux

operating system and the basic configuration of the Linux

operating system does not contain device drivers for

TL16C2550 DUART chip based on the customized

interfacing with the MPC8308 PowerQUICC II Pro

Processor. Hence for the applications running on the

MDROADM card to communicate with the master

controller, a device driver has to be written for TL16C2550

DUART chip based on the customized interfacing.

4. DESIGN AND IMPLEMENTATION OF

DUART DEVICE DRIVER

The DUART is a serial device and comes under the category

of character drivers. In Linux kernel, there is separate layer

called the TTY layer, which is a type of character driver.

The TTY layer provides access to serial devices and the

DUART device driver hooks to the TTY layer to register

with the kernel. The TTY layer is organized into [8]

1. TTY core – this layer controls the interaction with

the user space

2. TTY line discipline – This layer formats the data

received from the user space and hardware in a

specific manner

3. TTY driver - this layer interacts with the low level

driver.

The serial core layer provides various interfaces to register

the DUART device with the TTY driver layer. The DUART

device driver needs to register its functions with the serial

core layer so that various operations on the DUART can be

performed. The following functions are implemented in the

DUART device driver.

4.1 Initialization Function

The kernel calls the initialization function of the DUART

device driver to install the driver.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 387

In the initialization, function, the registers of the MPC8308

PowerQUICC II Pro Processor [9] are configured. The

registers of the Local Access Windows and eLBC

subsystem are configured to enable the access to the

memory mapped registers of the TL16C2550 DUART chip.

The System Configuration registers are configured to set the

pin function of the multi-function pins. The GPIO and IPIC

registers are configured to enable the MPC8308

PowerQUICC II Pro Processor to recognize the interrupt of

the TL16C2550 DUART chip.

After the register configuration, the DUART device driver

registers with the kernel via uart_register_driver(struct

uart_driver *) interface. The data structure “struct

uart_driver” contains information about the name, major

and minor numbers, and number of ports of this driver.

After the device driver is registered, a request to allocate the

memory regions, required for communicating with the

DUART, is made to the kernel using

request_mem_region(unsigned long start_address, unsigned

long range, char *device_name) and the memory regions

are remapped using ioremap(unsigned long start_address,

unsigned long range), for accessing the region by the device

driver. After the remapping, DUART device driver registers

each individual port that it supports by calling the function

uart_add_one_port(struct uart_driver *, struct uart_port *).

The data structure “struct uart_port” contains all the

configuration data of each of the channel of the DUART.

4.2 Device Operation Functions

The DUART device driver provides the following functions

which are invoked by the kernel for the various device

operations.

1) startup Function: In the startup function, the mapping

for the GPIO interrupt is created and an interrupt handler is

registered with the kernel using request_irq(unsigned int

irq, irqreturn_t (*handler)(int irq, void * dev_id), unsigned

long flags, const char * device _name, void *dev_id).

After registering the interrupt handler, the FIFO and the

interrupts are cleared, the Line Control register is set with

the default parameters of Word Length 8 bits, no parity and

1 stop bit, the interrupt is enabled in the DUART channel

and the generation of interrupts for reception of characters is

enabled[10].

2) setterminos Function: The settermios function set the

DUART channel parameters set by the user. The parameters

of DUART channel include the baud rate, word length,

whether parity has to be enabled or not and if enabled if it

has to be set to even or odd parity and the number of stop

bits.

The FIFO is enabled and the various masks for the DUART

channel is set based on the termios structure set by the user

space.

3) type Function: The type function returns the name of the

DUART.

4) shutdown Function: The shutdown function disables the

interrupt and the break condition in the DUART channel and

deregisters the interrupt handler using free_irq(unsigned int

irq, void *dev_id).

5) breakctl Function: The breakctl function sets the break

condition as requested by the user space.

6) stoprx Function: The stoprx function disables the

generation of reception interrupts in the DUART channel.

7) starttx Function: The start function enables the

generation of interrupts when the Transmit Holding Register

is empty.

8) stoptx Function: The stoptx function disables the

generation of interrupts when the Transmit Holding Register

is empty.

9) txempty Function: The txempty function checks whether

the Transmit Holding Register is empty.

10) interrupt Handler: The interrupt handler handles the

interrupt generated by the DUART channel.

If the transmit holding registers empty interrupt is generated,

the driver checks if there is data from the user space to be

sent out. If the data is available to be transmitted, the data is

transferred to the DUART channel FIFO. This process

continues till all the data from the user space is transmitted.

Once the transmission is complete, the generation of

interrupts when the Transmit Holding Register is empty is

disabled.

If the receive line interrupt is raised, the error is intimated to

the TTY layer via the TTY flip buffer.

If the data ready interrupt is raised, the data is pushed to the

TTY flip buffer and is intimated to the TTY layer via the

TTY buffer.

4.3 Exit Function

The kernel calls the exit function of the DUART device

driver to uninstall the driver.

In the exit function, DUART device driver deregisters each

individual port by calling the function

uart_remove_one_port(struct uart_driver *, struct uart_port

*). The memory regions are unmapped using

iounmap(unsigned long mapped_address). The memory

regions allocated for communicating with the DUART is

released using release_mem_region(unsigned long

start_address, unsigned long range) and the DUART device

driver deregisters with the kernel via

uart_unregister_driver(struct uart_driver *) interface. The

registers of the MPC8308 PowerQUICC II Pro Processor

are re-configured to disable the GPIO interrupts.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 388

5. TESTING AND RESULTS

The device driver is tested using the setup shown in Fig-3.

MDROADM Board

 RS232

TL16C2550

Ethernet

ethernet

Host Development System

Serial Terminal

Fig-3: Development and Testing Environment

There are two connections to be done with the MDROADM

board. These are

1) An RS-232 connection via serial cable between the

TL16C2550 DUART chip and the serial terminal

system

2) An Ethernet connection via cross cable between the

on-chip Ethernet controller on the MPC8308

processor and host development system.

The host development system is used for developing the

device driver code and downloading the device driver

binary to the MDROADM board via the Ethernet

connection.

The device driver code is implemented in C language, as per

the design, in the host development system. The code is

compiled in the host development system using the Linux

target image builder (LTIB). On successful compilation, a

.ko file is generated. This binary file of the device driver is

loaded onto the MDROADM board. The driver is installed

in the MDROADM board.

A test application is written and loaded onto the

MDROADM board to test the implemented device driver.

The application opens the device node of the TL16C2550

DUART, sets the communication parameters, receives some

test data transmitted from the serial terminal system through

the TL16C2550 DUART and also transmits data to the serial

terminal system via the TL16C2550 DUART. The test

application sends a data stream 0xF1, 0xF2, 0xF3, 0xF4,

0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xF1, 0xF2, 0xF3,

0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xF1, 0xF2,

0xF3, 0xF4, 0xF5.

Fig-4 and Fig-5 shows the snap shots of the serial terminal

application that captures the data transmitted from the

application via the TL16C2550 DUART. The DUART

parameter is set at 9600 bit/sec, Word Length 8, no parity, 1

stop bit. The 8 bits of the data is received at the terminal.

Hence the received data is - 0xF1, 0xF2, 0xF3, 0xF4, 0xF5,

0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xF1, 0xF2, 0xF3, 0xF4,

0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xF1, 0xF2, 0xF3,

0xF4, 0xF5 – as expected.

Fig-4: Word Length 8, no parity, 1 stop bit

When the Word Length is set to 6, the last 6 bits starting

from the LSB is transmitted as shown in Fig-5.

Fig-5: Word Length 6, no parity, 1 stop bit

As only the last 6 bits are transmitted the received characters

are in the series of 0x3x. Hence the received data is - 0x31,

0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A,

0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,

0x3A, 0x31, 0x32, 0x33, 0x34, 0x35 – as expected.

Table -1 shows the results of the tests conducted with non-

matching parameter at the serial terminal and TL16C2550

DUART. TL16C2550 DUART is set with the parameter –

9600 bit/sec, Word Length 8, Even Parity, 2 stop bit.

Table -1: Non matching parameter test results

Sl.

No.

Parameter set at Serial Terminal

Result
Number

of Data

Bits

Parity

Enabl

ed

Parity

Type

Number

of Stop

bits

1 8 No - 1
Framing

Error

2 8 No - 2
Correct

Data

3 8 Yes Even 1
Correct

Data

4 8 Yes Even 2
Correct

Data

5 8 Yes Odd 1
Parity

Error

6 8 Yes Odd 2
Parity

error

A string “ab” is sent from the serial terminal. The Table -1

list the error detected for the first character. The expected

parity bit for character “a” will evaluate to „1‟.

In case 1, the stop bit of the first character is treated as

parity bit and the start bit of the next character is treated as

stop bit. Hence, stop bit is corrupted and framing error is

detected. In case 2, the stop bit of the first character is

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 389

treated as parity bit and the second stop bit of the first

character is treated as the stop bit. When stop bits are

configured as 2 in the receiver side, only the first received

stop bit is validated. Hence in this case, the stop bit is

treated as valid and the data received is interpreted as

correct. In the case 3, the second stop bit of the first

character is treated as the stop bit and hence no error is

detected.

The case 4, in Table -1, has matching parameters and hence

the data received is proper. The case 5, 6, there is a

mismatch in parity and parity error is detected.

6. CONCLUSIONS

In this paper, a device driver for TL16C2550 DUART chip

that is interfaced with the MPC8308 processor via eLBC,

IPIC and GPIO lines is designed and implemented. The

device driver is able to successfully register with Linux

kernel and the DUART device is made visible to the user

space application. Also the device driver is verified to be

able to read and write to the various registers properly. The

device driver is able to set the parameters of the TL16C2550

DUART – baud rate, word bits, parity and number of stop

bits – properly and hence enable the DUART for

transmitting and receiving the data properly. The

TL16C2550 DUART is able to detect the errors when non-

matching parameter is set in its transmitter/ receiver

counterpart. The appropriate error flags are set in the TTY

layer for the detected error. Hence, it is ensured that the

communication link between the MDROADM and the

master controller is reliable.

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Shaik Saifulla (UTL

Technologies Ltd.) and Dr. Siva Yellampalli (Dept. of PG

Studies, VTU Extension Centre, UTL Technologies Ltd.)

for their guidance and feedback to the work.

REFERENCES

[1] Noergaard. Tammy, Embedded Systems Architecture

- A Comprehensive Guide for Engineers and

Programmers, Har/Cdr edition, Elsevier Inc, 2005

[2] Shibu KV, Introduction to Embedded Systems, 1st

Ed, Tata McGraw Hill, 2011.

[3] A. Lennon, "Embedding Linux", IEE Review, vol. 47,

no. 3, pp.33 -37, May 2001.

[4] Sang-Pil Moon, Joo-Won Kim, Kuk-Ho Bae, Jae-

Cheon Lee and Dae-Wha Seo, "Embedded Linux

Implementation on a Commercial Digital TV

System”, IEEE Transactions on Consumer

Electronics, Vol. 49, No. 4, pp. 1402 – 1407,

November 2003.

[5] Jonathan Korbet et al., Linux Device Drivers, 3 rd ed.,

O‟Reilly 7 Media Inc., 2005.

[6] Yongxiang Guo, Wu Deng, “Design of Network

device driver in embedded Linux”, IEEE

International Conference on Computer Application

and System Modeling, ICCASM 2010, pp.V12-445 -

V12-448.

[7] Luis Velasco, Salvatore Spadaro, Jaume Comellas,

Gabriel Junyent, “ROADM design for OMS-DPRing

protection in GMPLS-based optical networks”, IEEE

6th International Workshop on Design and Reliable

Communication Networks, 2007,. DRCN 2007, pp.1 -

7.

[8] P. Raghavan , Amol Lad, Sriram Neelakandan,

Embedded Linux system design and development,

Auerbach Publications, 2006.

[9] Freescale Semiconductor Inc., MPC8308

PowerQUICC II Pro Processor Reference Manual,

Rev 1, 2013.

[10] Texas Instruments Inc, TL16C2550 data sheet, 2012.

BIOGRAPHIES

Risma Rajan is pursuing her M. Tech. in

VLSI Design and Embedded Systems at

VTU Extension Centre, UTL

Technologies Limited, Bangalore. She has

around 8.5 years of experience in

embedded domain and is currently

working at Tata Consultancy Services Limited, Bangalore.

Dr. V. Venkateswarlu received his B.E.

degree in Electrical & Communication

Engineering, M.E. degree in Electronics

and Ph.D. degree in Semiconductor

Devices from the Indian Institute of

Science, Bangalore. He has around 30 years

of industry experience and is currently the

Principal and Head of Department at VTU Extension

Centre, UTL Technologies Limited, Bangalore.

oto

