
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 108

A NOVEL MRPSoC PROCESSOR FOR DISPATCH TIME

CURTAILMENT

Parvathy Asokan
1
, Kavitha.V

2
, K.V. Ramakrishnan

3

1
Mtech, CMRIT, Bangalore, India

2
Ph.D. Scholar, Jain University, India

3
Professor

Abstract
This paper describes a platform which consists of Multi Reconfigurable Instruction Set Processor System on Chip (MRPSOC).

Reconfigurable Instruction set processor (RISP) consists of a microprocessor core that can be extended with reconfigurable logic.

RISP and MPSOC are the two methods to improve the performance. By combining both, better results can be achieved. MRPSOC

can run applications in parallel and accelerate the performance due to its reconfigurable functional unit (RFU) and at the same

time it retains programmability. In this paper, Dynamic Critical Path algorithm is used to extract the custom instructions. In this

platform, the critical portions of the code can be executed on RFU. For verifying the efficiency of MRPSoC, a set of instructions

are executed in both MRPSoC and MPSoC. Finally, from the experimental results, it is concluded that the dispatch time of

executing a set of instructions are curtailed as compared to MPSOC.

Keywords- Reconfigurable Instruction set Processors (RISP), Multi-processor System on Chip (MPSoC),

Reconfigurable Processing Unit (RPU), and Reconfigurable Functional Unit (RFU)

---***--

1. INTRODUCTION

General Purpose Processors (GPP) are designed for general

purpose computers such as PCs, workstations etc. The most

important concern of GPP is the computation speed. The

cost of the GPP is much higher than DSPs and

microcontrollers. All techniques which increases the CPU

speed can be applied to GPPs. For example, GPPs usually

include on-chip cache and on-chip DMAs. GPPs provide

hardware circuits for commonly used math and logic

operations. GPPs have a balanced instruction set. They are

not designed for fast real-time applications. The secondary

concern of GPP is the cost. Most of the GPPs can execute

Digital Signal Processing (DSP) algorithms. But they are not

used for portable devices such as mobile phones. In such

cases, specialized digital signal processors are used. They

have almost the same integration level and clock frequencies

as GPPs. But DSPs have better performance and lower

latency. So DSPs are lower-cost alternative to GPPs.

An Application Specific Integrated Circuit (ASIC) is an

integrated circuit customized for a particular application. For

example, a chip designed to run in a digital voice recorder.

As the feature size decreases, the maximum complexity

possible in an ASIC has grown from 5000 gates to over 1

million. Modern ASICs include entire microprocessors,

memory blocks including ROM, RAM, EEPROM etc and

other large building blocks. Such an ASIC is often named

as SoC (system-on-chip). Hardware description languages

(HDLs) can be used to describe the functionality of ASIC.

The non-recurring engineering (NRE) cost of an ASIC is

very high.

An ASIP is a programmable architecture that is designed in

a specific way to perform certain tasks more efficiently.

ASIPs are having less production costs, simplified

manufacturing process and less power consumption. An

ASIP instruction is usually different than a normal

instruction. It doesn’t have to be composed of a mnemonic

and register/memory operands. The application of ASIP

determines the instruction-set format. An ASIP uses either

general purpose registers or configuration registers.

Instructions set in ASIPs can be divided into two parts-

Static and Configurable. Static logic defines a minimum ISA

and configurable logic can be used to design new

instructions. In Application Specific Instruction Set

Processors (ASIP), the critical portions of an application can

be executed using Custom Function Unit (CFU). They

provide high programmability and high flexibility. The

major drawbacks of ASIP are increasing algorithm

complexity and high NRE cost. As algorithm complexity

increases, the completion time increases. So it is required to

intend a design which reduces the dispatch time without

compromising the performance.

Reconfigurable Instruction Set Processors (RISP) and Multi

Processors System on Chip (MPSoC) can be used to

increase the performance. So by amalgamating both in a

single platform, better results can be achieved. Such a

platform is entitled as Multi Reconfigurable Instruction Set

Processor System on Chip (MRPSoC). In this paper, an

MRPSoC with two RISP processors has been designed.

http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/RAM
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/System-on-chip
http://en.wikipedia.org/wiki/Non-recurring_engineering

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 109

2. RELATED WORK

The researchers “F. Barat, R. Lauwereins and G.

Deconinck” developed Dynamically Reconfigurable RISP

which can be reconfigured during runtime [3]. The authors

Giovanni Ansaloni, Paolo Bonzini, Laura Pozzi, described

an Expression Grained Reconfigurable array (EGRA) in

which the processor is stalled during reconfiguration [4].

EGRA is inspired by the Configurable Computation

Acceleration (CCA) structure proposed by Clark [5]. The

CCA is used as standalone acceleration. The authors A.

Lodi, M.Toma, F.Campi, A.Capelli, R. Canegallo and

R.Guerrieri described a VLIW processor with

reconfigurable instruction set for embedded applications [6].

The author G.Martin described a Multi-Processor SoC –

Based Design Methodologies using Configurable and

Extensible Processors [7]. Several algorithms can be used to

generate the custom instructions. One such algorithm is the

synthesis algorithm [8]. It performs scheduling and

customization procedure simultaneously. Authors in [9]

demonstrate that combination of multicore processor and

reconfigurable instruction set extensions creates multi- level

parallelism for high performance. ReMAP (Reconfigurable

Multicore Acceleration and Parallelization) [10] uses

common RFU between heterogeneous cores. RFU is loosely

coupled with cores with a fine granularity. The methodology

in [11] customizes a MPSoC platform by a repetitive

procedure. Initially it assigns the tasks to processors and

then adds CIs for the tasks which are on critical path until

the selected path is no longer critical.

3. MRPSoC

MRPSoC is an amalgamation of RISP and MPSoC in a

single platform. In this paper, an MRPSoC with two RISP

processors has been designed as shown in Figure.1.

Fig-1 MRPSoC with two RISP processors

A Reconfigurable processor is a microprocessor with an

obliterate hardware and can be rewired dynamically. These

processors amalgamate a microprocessor with

reconfigurable logic. The reconfigurable logic will furnish

the hardware specialization of the application to be

executed. Reconfigurable processors can be revamped after

design in the same manner as programmable processors. The

Reconfigurable Instruction Set Processor (RISP) is a

subgroup of reconfigurable processors. RISP consists of a

microprocessor and a Reconfigurable Processing Unit

(RPU). The orientation of the RPU with respect to the

microprocessor determines the performance of RISP. The

advantage acquired from enacting a piece of code in the

RPU relies upon the communication and execution costs.

The time required for an operation execution in RPU is the

aggregate of the time required to send the processed data

and the time needed to process it. If this time is less that the

time it would take with the processor alone, an up gradation

is required.

The RPU can be situated in three positions with respect to

the processor: Attached processor, Coprocessor, Functional

unit. In attached processor, the RPU is attached on the I/O

bus. An example for the attached processor is PRISM- 1. In

coprocessor, the RPU is kept besides the processor. An

example for coprocessor is GARP. If the RPU is placed

inside the processor, then it is said to be Reconfigurable

Functional Unit (RFU). An example for the RFU is One

Chip98.

The coupling of RPU with respect to the microprocessor is

shown in Figure.2. The attached processor and the

coprocessor lashing schemes are called loosely coupled. The

Reconfigurable functional unit is tightly coupled. The RFU

takes less time for data transfer between the processor and

the reconfigurable logic as compared to Attached processor

and Coprocessor. The first reconfigurable processor used

Attached processor or Coprocessor type processing unit. In

now a days, as the gate capacity is growing, the processors

are designed with RFU.

Fig-2.RPU coupling with respect to microprocessor

For designing a RISP, two main tasks are there: One is the

interfacing between the microprocessor and the RFU and the

second is the design of RFU. The interfacing between the

microprocessor and the RFU rely on the instruction types

that can be executed on the RFU. There are two types of

instructions which can be executed on the RFU: Stream

based or block based instruction and custom instruction. The

block based instructions manage prodigious amounts of data

in sequence or by blocks. Only some applications use this

type of instructions. The custom instructions manage fewer

amounts of data at a time and it also produces small amounts

of data. As these instructions impose diminutive restrictions

on the attributes of the application, they can be employed for

most applications. The number of instructions and the type

of instructions that will increase the performance of RISP is

RISP #1 RISP #2

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 110

decided by the design of RFU. The primary facet in the RFU

design is the granularity of RFU. The granularity elucidates

the functionality of the basic building blocks and their

interconnection paths. Depending on the granularity, RFUs

can be classified into two: Fine grained RFU and Coarse

grained RFU. For fine grained RFU, the building blocks are

gates. So more information is required to express an

instruction. The fine grained RFU is best suited for bit

manipulation operation. For coarse grained RFU, the

building blocks are larger such as ALU, multipliers, shifters

etc. They operate on wider bus. It requires less information

to express an instruction. The coarse grained RFU is best

suited for bit parallel operations and computation intensive

applications. As compared to fine grained RFU, coarse

grained RFU provides high performance.

Fig-3.Implemented MRPSoC block diagram

The granularity also influences the size of the configuration

stream and configuration time. As the size of the application

data is compact when compared to the logic, the

performance curtails because of unexploited power. If the

size of the application data is prodigious when compared to

the logic, the performance curtails because of

reconfigurability overhead.

Multiprocessor System On chip (MPSOC) can be classified

into two heterogeneous and homogeneous. Heterogeneous

MPSOC is more suitable to meet the desired performance

but it does not provide enough scalability and feasibility as

compared to homogeneous MPSOC. Homogeneous MPSOC

are flexible, fault tolerant and scalable but they do not have

desired performance. So we need to design a middle solution

that uses both features of homogeneous and heterogeneous

MPSOC.

The MRPSoC is a combination of RISP and MPSoC in a

common platform. This platform curtails the dispatch time

of instruction execution by executing the complex or critical

instructions on the RFU and executing the instructions

concurrently on the ALU and RFU. The block diagram of

the implemented MRPSoC is shown in Figure.3.

The MRPSoC curtails the dispatch time of instruction

execution by executing the complex or critical instructions

on the RFU and executing the instructions concurrently on

the ALU and RFU. The implemented MRPSoC consists of

two RFUs. One RFU consists of four input, three output and

four levels with four, three, one and one function units in

each level respectively. The second RFU consists of three

inputs, two outputs and three levels with three, two and one

function units in each level

4. MRPSoC FLOW DIAGRAM

The MRPSoC flow diagram is shown in Figure.4.

Instructions from software are converted into binary by

using the Perl Compiler. Then it is accumulated in the cache

memory. Each instruction is analyzed to determine whether

it is critical or not. This can be done by using Dynamic

Critical Path (DCP) algorithm. For implementing the DCP

algorithm the Absolute Earliest Start Time (AEST) and the

Absolute Latest Start Time (ALST) of the instruction is

calculated. If AEST and ALST are equal, that particular

instruction is critical. Such instructions are entitled as

Custom Instructions (CI).

The instructions are fetched in the order ALU1, RFU1 &

RFU2, ALU2, and RFU3 & RFU4. If an instruction is non-

critical, it is fetched by the fetch unit of ALU1. Then it is

decoded and executed. If an instruction is critical, it is

fetched by the fetch unit of RFU1 or RFU2 depending on

the availabilities of RFUs. If both RFUs of one core are

available, they both will fetch the critical instructions at the

same time and then decoded and executed. So a total of

three instructions can be executed concurrently. Since the

resources are shared by the two cores, if one core operates

the other will be in idle state.

The programming language used is System C and the

operating system is CYGWIN.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 111

Fig-.4. MRPSoC flow diagram

5. RESULTS

In this paper, the performance of MRPSoC has been

examined by executing a set of instructions. These

instructions are also executed by using MPSoC to certify

that MRPSoC curtails the dispatch time of instruction

execution. This is shown in Table.1 and Figure.5.

Table.1. Comparison of MPSoC and MRPSoC based on the

dispatch time

Fig.5. Comparison of MPSoC and MRPSoC based on the

dispatch time

6. CONCLUSIONS AND FUTURE SCOPE

In this paper, an MRPSoC is designed with two

reconfigurable instruction set processors. Each RISP

processors accommodates a special function unit called

Reconfigurable Functional Unit (RFU) to reduce the

dispatch time of a set of instructions. In order to recognize

the curtailment of dispatch time of a set of instructions by

using MRPSoC, a set of instructions has been executed in

MPSoC also provided the same initial fetch time. After the

successful execution of both MPSoC and MRPSoC, it is

concluded that MRPSoC curtails the dispatch time of a set

of instructions. The MRPSoC curtails the dispatch time of

instruction execution by two ways: executing the complex

or critical instructions on the RFU and executing the

instructions concurrently on the ALU and RFU. For

distinguishing the critical instructions, the DCP algorithm is

used.

In this paper, a set of instructions has been executed. But in

future, real time applications can be implemented using

MRPSoC. In this paper, two cores are implemented in a

single chip. Later, it can be extended for more than two

cores and to apply synchronization between the cores.

Processor/

Dispatch Time(ns)

For pc=5

For pc=7

For pc=9

MRPSoC 37 46 48

MPSoC 37 52 65

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 112

Further MRPSoC can be configured for different traffic

loads.

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my Guide

Mrs. Kavitha.V, Ph.D. Scholar, Jain University for her

timely advice on the technical support and regular assistance

throughout the paper work.

REFERENCES

[1]. R.Soleymanpour, Siamak Mohammadi, “A Platform for

Multi Reconfigurable Instruction Set Processor System On

Chip”, in CSI International Symposium, 2013, pp.99-104

[2]. F. Barat and R.Lauwereins, “Reconfigurable Instruction

Set Processors: A Survey”, Rapid system prototyping, 11
th

international workshop, 2000, pp.168- 173.

[3]. F. Barat, R. Lauwereins and G. Deconinck,

“Reconfigurable instruction set processors from a hardware/

software perspective”, Software engineering, IEEE

Transactions on, vol.28, no.9, pp.847-862, 2002.

[4]. Giovanni Ansaloni, Paolo Bonzini, Laura Pozzi,

“EGRA: A Coarse Grained Reconfigurable Architectural

Template”, Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on Vol.19, no. 6, pp 1062 – 1074, 2010.-

[5]. N. Clark, M. Kudlur, H. Park, S. Mahlke, and K.

Flautner, “Application-specific processing on a general-

purpose core via transparent instruction set customization,”

in Proc. 37th Ann. Int. Symp. Micro arch.(MICRO’37),

Washington, DC, Dec. 2004, pp. 30–40.

[6]. A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo,

and R.Guerrieri, "A VLIW processor with reconfigurable

instruction set for embedded applications," Solid-State

Circuits, IEEE Journal of, vol. 38,no. 11,pp. 1876-

1886,2003.

[7]. G. Martin, "Overview of the MPSoC design challenge,"

in Proceedings of the 43rd annual Design Automation

Conference, 2006, pp. 274-279.

[8]. R. Soleymanpour, S. Mohammadi, and H. Rajabi, "A

synthesis algorithm for customized heterogeneous multi-

processors," in SoC Design Conference (ISOCC), 2012

International, 2012, pp. 151 -154.

[9]. Z. Chen, R. N. Pittman, and A. Forin, "Combining

multicore and reconfigurable instruction set extensions," in

Proceedings of the 18
th

 annual ACMISIGDA international

symposium on Field programmable gate arrays, 2010, pp.

33-36.

[10]. M. A. Watkins and D. H. Albonesi, "ReMAP: A

reconfigurable heterogeneous multicore architecture," in

Micro architecture (MICRO),2010 43rd Annual IEEEIACM

International Symposium on, 2010, pp.497-508.

[11]. F. Sun, S. Ravi, A. Raghunathan, and N. Jha, "A

Framework for Extensible Processor Based MPSoC

Design," Designing Embedded Processors, pp. 65-95, 2007

[12]. https://www.ida.liu.se/~TDDI08/labs/lab1.pdf

