MORPHOMETRIC ANALYSIS OF A VRISHABHAVATHI SUB WATERSHED UPSTREAM SIDE OF GALI ANJANEYA TEMPLE USING GEOGRAPHICAL INFORMATION SYSTEM

C.B.Jagadeesh¹, H.S.Shivakumaranaikl2, Nagaraj Sitaram³

¹Professor, Department of Civil Engineering, Nagarjuna College of Engineering and Technology, Bangalore, Karnataka, India.
²Project Scientist, K.S.N.D.M.C, Bangalore, Karnataka, India
³Professor, Department of Civil Engineering, S.J.B.I.T., Bangalore, Karnataka, India

Abstract
The abrupt flood event at Gali Anjaneya Temple in Vrishabhavathi sub watershed disrupts the normal life and cause loss to economy. Main objective of the study is to characterize the morphometric parameters near the Gali Anjaneya Temple, based on toposheets 57/H 9 and 57/H/ 9/1(scale 1:25,000) used for morphometrical analysis. The morphometric parameters were delineated through STRM data using ArcGIS-10.1.software. The sub watershed is covering about 34.4 Km² consists of valleys and plains mainly in urban area. The longest flow path is calculated and found to be 9.3 Km. The study reveals that Remote sensing technology can be employed for watersheds modeling for the study region. The paper highlights the key parameters of watershed such as morphometry and slope analysis by using GIS/RS data.

Keywords: Gali Anjaneya Temple, Morphometry, Vrishabhavathi sub watershed, Drainage Characteristic, SOI: Survey of India, DEM: Digital Elevation Model, Advanced Space-borne, ArcGIS,: GIS, RS, Spatial analysis, hazards, River basin

1. INTRODUCTION
The morphometric analysis refers to quantitative evaluation of characteristics of earth surface and any landform unit. This is the most common technique in basin analysis, as morphometry form an ideal areal unit for interpretation and analysis of fluvially originated landforms where they exhibits and example of open systems of operation. The composition of the stream system of a drainage basin in expressed quantitatively with stream order, drainage density, bifurcation ration and stream length ratio (Horton, 1945). It incorporates quantitative study of the various components such as, stream segments, basin length, basin parameters, basin area, altitude, volume, slope, profiles of the land which indicates the nature of development of the basin. Horton’s laws were subsequently modified and developed by several geomorphologist, most notably by Strahler (1952, 1957, 1958, and 1964), Schumm (1956), and etc.

The study area Gali Anjaneya Temple sub watershed lies in the Southern part of the Bangalore city, Karnataka, India through which the Northern part of the Vrishabhavathi valley flows. Geographically, the study area is located at latitude 13°0’11” N and 70°32’6” E longitude, covering a total area of about 34.4.Km² (Figure1). The SOI Topo-sheet numbers are 57/H 9 and 57/H/ 9/1 arc scale (1:25,000) are used to delineate the boundary and morphometric analysis.

For the present study, Remote Sensing (Lillisand Thomas, 2002) and Geographical Information System (GIS) will be used as tools for managing and analyzing the spatially distributed information’s. ArcGIS powerful software to analyze, visualize, update the geographical information, and create quality presentations that brings the power of interactive mapping and analysis. Many researchers have done morphometric analysis using Remote Sensing and GIS technique. (Shakil Ahmad et al., 2012) has used Geoinformatics for assessing the morphometric control on
hydrological response at watershed scale in the upper Indus Basin.

The urban flooding at Gali Anjaneya Temple during monsoon disrupt the normal life in southern Bangalore. The main objectives of the present study are morphometric analysis of Gali Anjaneya Temple sub watershed area to understand the hydrological process of the (DEM) catchment with the help of ArcGIS software.

The urban flooding at Gali Anjaneya Temple during monsoon disrupt the normal life in southern Bangalore. The main objectives of the present study is morphometric analysis of Gali Anjaneya Temple sub watershed area to understand the hydrological process of the (DEM) catchment with the help of ArcGIS software.

2. METHODOLOGY

The Topographic map of the study area is digitized with the help of topo-sheet number 57H/9 and 57H/9/1 with the scale of 1:25,000 obtained from Survey of India. Strahler’s, Horton’s and Schumm’s methods have been employed to assess the fluvial characteristics of the study region. The maps were georeferenced and digitized in ArcGIS-10.1 and Erdas Imagine-10 software’s and attributes were assigned to create the digital database (0.0001). The map showing drainage pattern in the study area (Figure 2) is draped over STRM to prepare DEM with 10m resolution (Figure 3). The drainage pattern in the study area is mainly urban and hence the management of flood during the rainy season poses a challenge to control and manage the flood at Gali Anjaneya Temple.

Drainage net work of Vrishabhavathi sub basin is prepared with DEM model. The characteristics of drainage network is identified by stream ordering in the study area. Direction of flow (Figure 4) and flow accumulation (Figure 5) maps are prepared with the help of slope characteristics of the catchment.
The morphometric analysis was carried out at sub-basin level in the GIS System (ArcGIS-10.1). Based on the drainage order, the drainage channels were classified into different orders. In GIS, drainage channel segments, Strahler’s system, has been followed because of its simplicity, where the smallest, un-branched fingertip streams are designated as 1st order, the confluence of two 1st order channels give a channels segments of 2nd order, two 2nd order streams join to form a segment of 3rd order and so on. When two channel of different order join then the higher order is maintained. The trunk stream is the stream segment of highest order.

Table 1: Basic Parameters of Vrishabhavathi Catchment

<table>
<thead>
<tr>
<th>Stream order (U)</th>
<th>No. of stream</th>
<th>Total length of streams (Km)</th>
<th>Cumulative length (Km)</th>
<th>Mean stream length (Lsm) (Km)</th>
<th>Bifurcation ratio (Rb) (Km)</th>
<th>Length ratio, (Rl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>146</td>
<td>45</td>
<td>45</td>
<td>0.308</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>24</td>
<td>69</td>
<td>0.728</td>
<td>4</td>
<td>4.424</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>13.2</td>
<td>82</td>
<td>1.46</td>
<td>3.666</td>
<td>0.8633</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8.8</td>
<td>91</td>
<td>4.382</td>
<td>4.5</td>
<td>0.922</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.1</td>
<td>91</td>
<td>0.1</td>
<td>2</td>
<td>43.685</td>
</tr>
<tr>
<td>Total</td>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of morphometric Parameter of Vrishabhavathi sub watershed upstream of Gali Anjaneya Temple

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>Detail</th>
<th>DEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Area of the catchment,(km2)</td>
<td>34.4</td>
</tr>
<tr>
<td>2</td>
<td>Total no. of Stream</td>
<td>191</td>
</tr>
<tr>
<td>3</td>
<td>Total length of the Stream(Km)</td>
<td>91.078</td>
</tr>
</tbody>
</table>
4. CONCLUSIONS

The morphometric analysis of Vrishabhavathi sub watershed upstream of Gali Anjaneya Temple has been carried out to understand the flooding scenario at the temple. The Vrishabhavathi sub watershed upstream of the temple is analyzed and morphometric parameters are estimated. Following is a summary of the results and a discussion of the inferences from the results.

- Study area satisfies Horton’s law of stream length. States that “streams of smaller lengths are characteristics of areas with larger slopes”, it seems to be in geometric progression.
- The relationship between stream order with log of number of stream and log of total length was examined (Figures 6a & 6b), it seems to be in geometric progression and agree with Horton’s law of stream length. The study shows the total length of stream decreases with increasing order of stream.
- Drainage density worked out to be 2.64 Km/km² which lies in coarse region. It is a reflection of magnitude of surface runoff which leads to formation trellis drainage pattern.
- The Horton’s law of stream orders holds good for the catchmentunder study
- The catchment is largely circular (Re = 0.639) and largely coarse in texture (Drainage density D2 = 2.6476 Km/Km²) with high Stream frequency (Fs = 5.52). The Circularity ratio is s 0.639 indicating that basin largely circular in shape.

- As reflected by the values of relief ratio, the catchment consists of land area with moderate to high slope (Rr = 5.615) characteristics.
- The morphometric values of Vrishabhavathi sub watershed upstream of Gali Anjaneya Temple shows a higher value of stream density, slope and relief ratio. These parameters can be used to predict the peak flood values at Gali Anjaneya Temple during the monsoon season in Bangalore.

REFERENCES

<table>
<thead>
<tr>
<th>4</th>
<th>Perimeter of the Catchment(Km)</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Length of the Catchment(Km)</td>
<td>9.311</td>
</tr>
<tr>
<td>6</td>
<td>Width of the Catchment(Km)</td>
<td>4.269</td>
</tr>
<tr>
<td>7</td>
<td>Catchment Relief(m)</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>Drainage density(Km/Km²)</td>
<td>2.6476</td>
</tr>
<tr>
<td>9</td>
<td>Length of overland flow(Km)</td>
<td>1.3238</td>
</tr>
</tbody>
</table>

AREAL ASPECTS

10 Compactness coefficient 0.00619
11 Circularity ratio 0.639
12 Constant channel maintenance 0.3777
13 Stream frequency 5.552
14 Form factor 0.396
15 Elongation ratio 0.711
16 Drainage Texture 14.70

RELIEF ASPECTS

17 Relief ratio 5.615
18 Relative relief 0.005769
19 Ruggedness number 2.3325
Hydrology (edited by Ven Te Chow) Mc Graw Hill
Section, pp 4-11

Characteristics and Basin Management Using RS and

BIOGRAPHIES

Jagdeesh C.B., Professor, Department of
Civil Engineering, Nagarjuna College of
Engineering and Technology, Bangalore,
Karnataka, India- 562 110

Dr.H.S.Shivakumaraiklal, Scientist,
K.S.N.D.M.C., Bangalore, Karnataka, India – 560 064.

Dr. Nagaraj Sitaram, Professor, Department
of Civil Engineering, SJB Institute of
Technology, Bangalore, Karnataka, India - 560 060.