RESTRAINED LICT DOMINATION IN GRAPHS

M.H. Muddebihal¹, Kalshetti Swati.M²

¹Professor and Chairman, Department of P.G. Studies and Research in Mathematics Gulbarga University, Gulbarga, Karnataka, India. ²Assistant Professor, Department of Mathematics, Godutai Engineering College for Women, Gulbarga, Karnataka,

> India. Abstract

A set $D_r \subseteq V[n(G)]$ is a restrained dominating set of n(G), where every vertex in $V[n(G)] - D_r$ is adjacent to a vertex in D_r as well as another vertex in $V[n(G)] - D_r$.

The restrained domination number of lict graph n(G), denoted by $\gamma_m(G)$, is the minimum cardinality of a restrained dominating set of n(G). In this paper, we study its exact values for some standard graphs we obtained. Also its relation with other parameters is investigated.

Subject classification number: AMS-05C69, 05C70

Keywords: Lict Graph / Line Graph / Restrained domination / Dominating set / Edge domination

1. INTRODUCTION

In this paper, all the graphs considered here are simple, finite, non-trivial, undirected and connected. As usual p and q denote, the number of vertices and edges of a graph G. In this paper, for any undefined terms or notations can be found in Harary [4].

As usual, the maximum degree of a vertex in G is denoted by $\Delta(G)$.

The degree of an edge e = uv of G is defined as $\deg e = \deg u + \deg v - 2$ and $\delta'(G)(\Delta'(G))$ is the minimum(maximum) degree among the edges of G.

For any real number x, $\lceil x \rceil$ denotes the smallest integer not less than x and $\lfloor x \rfloor$ denotes the greatest integer not greater than x. The complement \overline{G} of a graph G has V as its vertex set, but two vertices are adjacent in \overline{G} if they are not adjacent in G.

A vertex (edge) cover in a graph G is a set of vertices that covers all the edges (vertices) of G. The vertex (edge) covering number $\alpha_0(G)(\alpha_1(G))$ is a minimum cardinality of a vertex (edge) cover in G. The vertex (edge) independence number $\beta_0(G)(\beta_1(G))$ is the maximum cardinality of independent set of vertices (edges) in G.

The greatest distance between any two vertices of a connected graph G is called the diameter of G and is denoted by diam(G).

We begin by recalling some standard definition from domination theory.

A set D of a graph G = (V, E) is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set in G. The study of domination in graphs was begun by Ore [7] and Berge [1].

A set $D \subseteq V[L(G)]$ is said to be dominating set of L(G) if every vertex not in D is adjacent to a vertex in D. The domination number of G is denoted by $\gamma[L(G)]$ is the minimum cardinality of dominating set in G.

A set F of edges in a graph G is called an edge dominating set of G if every edge in E - F where E is the set of edges in G is adjacent to atleast one edge in F. The edge domination number $\gamma'(G)$ of a graph G is the minimum cardinality of an edge dominating set of G. The concept of edge domination number in graphs were studied by Gupta [3] and S.Mitchell and S.T.Hedetineim [6].

Analogously, we define restained domination number in lict graph as follows.

A dominating set D_r of lict graph is a restained dominating set, if every vertex not in D_r is adjacent in D_r and to a vertex in $V - D_r$. The restrained domination number of lict graph n(G), denoted by $\gamma_m(G)$ is the minimum cardinality of a restrained dominating set of n(G). The concept of restrained domination in graphs was introduced by Domke et al [2].

In this paper, many bounds on $\gamma_m(G)$ were obtained and expressed in terms of vertices, edges of G but not the elements of n(G). Also we establish restained domination number of a lict graph n(G) and express the results with other different domination parameters of G.

2. RESULTS

We need the following Theorems to establish our further results.

Theorem A [5]: For any connected (p,q) graph G, $\gamma'(G) \ge \left\lceil \frac{q}{\Delta'(G)+1} \right\rceil^{\cdot}$

Theorem B [5]: If G is a graph with no isolated vertex, then $\gamma'(G) \leq q - \Delta'(G)$.

Initially we begin with restrained domination number of lict graph of some standard graphs, which are straight forward in the following Theorem.

2.1 Theorem 1:

(i) For any cycle C_p with $p \ge 3$ vertices,

$$\gamma_{rm}(C_p) = p - 2\left\lfloor \frac{p}{3} \right\rfloor.$$

(ii) For any path P_p with p > 2 vertices,

$$\gamma_{rn}\left(P_{2n-1}\right) = k$$

$$\gamma_m(P_{2n}) = k$$
, When $n = 2, 3, 4, 5, \dots$

Then $k = 1, 2, 3, 4, \dots$

(iii) For any star $K_{1,p}$ with $p \ge 2$ vertices,

$$\gamma_m(K_{1,p})=1.$$

(iv) For any wheel W_p with $p \ge 4$ vertices,

$$\gamma_m \left(W_p \right) = 1 + \left\lceil \frac{p-3}{3} \right\rceil.$$

(v) For any complete bipartite graph K_{p_1,p_2} with $p_1, p_2 > 2$ vertices,

$$\gamma_m(K_{p_1,p_2}) = \min\{p_1,p_2\}.$$

(vi) For any complete graph K_p with $p \ge 3$ vertices,

$$\gamma_{rn}(K_p) = \left\lfloor \frac{p}{2} \right\rfloor$$

In the following Theorem, we establish the upper bound for $\gamma_m(T)$ in term of vertices of the G.

2.2 Theorem 2

For any tree T with p > 2 vertices and m end vertices $\gamma_m(T) \le p - m$. Equality holds if $T = K_{1,p}$ with $p \ge 2$ vertices.

Proof: If $diam(G) \le 3$, then the result is obvious. Let diam(T) > 3 and $V_1 = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of all end vertices in T with $|V_1| = m$. Further $E = \{e_1, e_2, e_3, \dots, e_n\}$ and $C = \{c_1, c_2, c_3, \dots, c_i\}$ be the set of edges and cutvertices in G. In n(G), $V[n(G)] = E(G) \cup C(G)$ and in $G \quad \forall e_i$ incicident with $c_i, 1 \le j \le i$ forms a complete induced subgraph as a block in n(G), such that number of blocks in n(G) = |C|. Let the $\{e_1, e_2, e_3, \dots, e_i\} \in E(G)$ which are non end of G edges forms cutvertices
$$\begin{split} C'(G) &= \left\{ c_1, c_2, c_3, \dots, c_j \right\} \quad \text{in} \quad n(G). \quad \text{Let} \\ C'_1 &\leq C' \text{ be a restrained dominating set in } n(G), \text{ such that} \\ \left| C'_1 \right| &= \gamma_{rn}(G). \text{ For any non trivial tree } p > q \text{ and} \\ \left| C'_1 \right| &\leq p - m \text{ which gives } \gamma_{rn}(T) \leq p - m. \end{split}$$

Further equality holds if $T = K_{1,p}$ then $n(K_{1,p}) = K_{p+1}$ and $\gamma_{rn}(K_{1,p}) = p - m$.

The following corollaries are immediate from the above Theorem.

Corollory 1: For any connected (p,q) graph G, $\gamma_m(G) + \gamma(G) \le \alpha_0(G) + \beta_0(G)$. Equality holds if G is isomorphic to C_4 or C_5 .

Corollory 2: For any connected (p,q) graph G, $\gamma_m(G) + \gamma(G) \le \alpha_1(G) + \beta_1(G)$. Equality holds if G is isomorphic to C_4 or C_5 .

2.3 Theorem 3

For any connected (p,q) graph G with p > 2 vertices, $\gamma_m(G) \le \left\lceil \frac{p}{2} \right\rceil$. Equality holds if G is C_4 or C_5 or C_8 or K_p if p is even.

Proof: Let $E = \{e_1, e_2, e_3, \dots, e_n\}$ be the edge set of G such that $V[n(G)] = E(G) \cup C(G)$, by definition of lict graph where C(G) is the set of cutvertices in G. Let $D_r = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V[n(G)]$ be the restrained dominating set of n(G). Suppose if $|V[n(G)] - D_r| \ge 2$, then $\{V[n(G)] - D_r\}$ contains atleast two vertices which gives $\gamma_{rn}(G) < \frac{p}{2} \le \left[\frac{p}{2}\right]$.

For the equality,

i) If *G* is isomorphic to C_4 or C_5 or C_8 . For any cycle C_p with $p \ge 3$ vertices $n(C_p) \cong C_p$, which gives $|D_r| = \left\lceil \frac{p}{2} \right\rceil$. Therefore $\gamma_{rn}(C_p) = \left\lceil \frac{p}{2} \right\rceil$. ii) If G is isomorphic to $K_{p}, \mbox{where is } p \mbox{ even, , then by Theorem 1 , }$

$$\gamma_{rn}(K_p) = \left\lceil \frac{p}{2} \right\rceil$$

In the following Theorem, we obtain the relation between $\gamma_m(G)$ and diameter of G.

2.4 Theorem 4

For any connected
$$(p,q)$$
 graph G ,
 $\gamma_m(G) \ge \left\lceil \frac{diam(G)+1}{3} \right\rceil$.

Proof: Let D_r be a restrained dominating set of n(G)such that $|D_r| = \gamma_m(G)$. Consider an arbitrary path of length which is a diam(G). This diameteral path induces atmost three edges from the induced subgraph $\langle N(v) \rangle$ for each $v \in D_r$. Furthermore since D_r is γ_m -set, the diametral path includes atmost $\gamma_m(G)-1$ edges joining the neighborhood of the vertices of D_r .

Hence
$$diam(G) \le 2\gamma_m(G) + \gamma_m(G) + 1$$
.
 $diam(G) \le 3\gamma_m(G) - 1$.

Hence the result follows.

The following theorem relates domination number of G and restrained domination number of n(G).

2.5 Theorem 5

For any connected (p,q) graph G with $p \ge 3$ vertices,

$$\gamma_m(G) \leq P$$

 $-\gamma(G)$. Equality holds if $G \cong C_4$ or C_5 .

Proof: Let $D = \{u_1, u_2, u_3, \dots, u_n\}$ be a minimal dominating set of n(G) such that $|D| = \gamma(G)$. Further let $F_1 = \{e_1, e_2, e_3, \dots, e_n\}$ be the set of all edges which are incident to the vertices of D and $F_2 = E(G) - F_1$.

Let $C = \{c_1, c_2, c_3, \dots, c_n\}$ be the cutvertex set of G. By definition of lict graph , $V[n(G)] = E(G) \cup C(G)$ and $F_1 \subseteq V[n(G)]$.Let $I_1 = \{e_1, e_2, e_3, \dots, e_k\}; 1 \le k \le i$, where $I_1 \subseteq F_1$ and $I_2 \subseteq F_2$. Since each induced subgraph which is complete in n(G) may contain at least one vertex of either F_1 or F_2 . Then $(I_1 \cup I_2)$ forms a minimal restrained dominating set in n(G) such that $|I_1 \cup I_2| = |D_r| = \gamma_m(G)$. Clearly $|D| \cup |I_1 \cup I_2| \le p$. Thus it follows that $\gamma(G) + \gamma_m(G) \le p$.

For equality,

If $G \cong C_p$ for p = 4 or 5, then by definition of Lict graph $n(C_p) \cong C_p$. Then in this case $|D| = |D_r| = \frac{p}{2}$. Clearly it follows that $\gamma_{rn}(G) + \gamma(G) = p$.

In [5], they related $\gamma'(G)$ with line domination of G. In the following theorem we establish our result with edge domination of G.

2.6 Theorem 6

For any non-trivial connected (p,q) graph G, $\gamma_{rn}(G) \ge \gamma'(G)$.

Proof: Let $E = \{e_1, e_2, e_3, \dots, e_n\}$ be the edge set of Gand $C = \{c_1, c_2, c_3, \dots, c_n\}$ be the set of cutvertices in $G, \qquad V[n(G)] = E(G) \cup C(G).$ Let $F = \{e_1, e_2, e_3, \dots, e_n\}$;

 $\forall e_i$, where $1 \le i \le n$ be the minimal edge dominating set of G, such that $|F| = \gamma'(G)$.

Since $E(G) \subseteq V[n(G)]$ every edge $e_i \in F$; $\forall e_i$; $1 \leq i \leq n$ forms a dominating set in n(G). Suppose $F_1 = E(G) - F \subseteq V[n(G)]$, we consider $I_1 = \{e_1, e_2, e_3, \dots, e_n\}$;

 $1 \le k \le i$, where $I_1 \subseteq F$ and $I_2 \subseteq F_1$. Since each induced subgraph which is complete in n(G) may contain

at least one vertex of either F or F_1 . Then $|I_1 \cup I_2|$ forms a minimal restrained dominating set in n(G). Clearly it follows that $|F| \subseteq |I_1 \cup I_2|$ in n(G). Hence $\gamma'(G) \leq \gamma_m(G)$.

In the next Theorem, we obtain the relation between domination number of G and restrained domination number of n(G) in terms of vertices and diameter of G.

2.7 Theorem 7

For any connected (p,q) graph G with p > 2 vertices,

$$\gamma_m(G) \le p +$$

 $\gamma(G) - diam(G).$

Proof: Let $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in G. Suppose there exists two vertices $u, v \in V(G)$ such dist(u,v) = diam(G).Let that $D = \{v_1, v_2, v_3, \dots, v_n\}; \quad 1 \le p \le n \text{ be a minimal}$ dominating set in n(G). Now we consider $F = \{e_1, e_2, e_3, \dots, e_n\}; F \subseteq E(G)$ and $\forall e_i \in V[n(G)], 1 \leq i \leq n \text{ in } n(G). \text{The } V[n(G)] =$ $E(G) \cup C(G)$, where C(G) is the set of cutvertices in G. Suppose F_1, C_1 are the subsets of F and C. Then \exists a set $\{J\} \in V[n(G)] - \{F_1 \cup C_1\}$ such that $\langle J \rangle$ has no isolates .Clearly $|F_1 \cup C_1| = \gamma_m(G)$.Let $u, v \in V(G)$, d(u,v) = diam(G),then $\{F_1 \cup C_1\} \cup diam(G) . Hence$ $\gamma_{m}(G) + diam(G) \le p + \gamma(G)$ which implies $\gamma_{rr}(G) \leq p + \gamma(G) - diam(G).$

The following Theorem, relates restrained domination number of n(G) in terms of vertices and $\Delta(G)$.

2.8 Theorem 8

For any connected (p,q) graph G, $\gamma_{rn}(G) \le p - \Delta(G)$. Equality holds if G is P_3 or C_p

$$\begin{pmatrix} 3 \le p \le 5 \end{pmatrix} \quad \text{or} \quad K_{1,p} \left(p \ge 2 \right) \quad \text{or} \quad K_{p_1,p_2} \quad \text{with} \\ p_1, p_2 > 2 \, .$$

Proof: We consider the following cases.

Case 1: Suppose G is tree. Then $E'(G) = \{e_1, e_2, e_3, \dots, e_n\}$ be the set of all end edges and $E(G) = \{e_1, e_2, e_3, ..., e_i\}; \forall e_i \in E(G)$ be the of all non-end edges. set Let $D_r = \{u_1, u_2, u_3, \dots, u_n\}$ be the vertex set of n(G) which corresponds to the set F and is a minimal edge dominating set of n(G) where $F \subseteq V[n(G)] =$ $E(G) \cup C(G), C(G)$ a set of cutvertices. Further let $I_1 \subset V[n(G)] = F$ and $I_2 \subseteq F_1$, where $F_1 = E(G) - F \subset V[n(G)]$. Then $(I_1 \cup I_2)$ forms a minimal restrained dominating set of n(G), where $I_1, I_2 \in E(G) \subseteq V[n(G)]$. Since it is clear that $\gamma_{m}(G) < p$ and p = q + 1. Let there exists a vertex $v_i \in \Delta(G)$ and also by Theorem 3, $\gamma_{rn} < \frac{p}{2}$, which gives the result of minimal restrained dominating set of n(G)such that $|D_r| \leq p - \Delta(G)$ and is $\gamma_{rn}(G) \leq P - \Delta(G)$

Case 2: Suppose G is not a tree , again we consider the following subcases of case 2.

Subcase 2.1: Assume G is a cycle $C_p(p \ge 3)$, Since for any cycle C_p with $p \ge 3$ vertices $\Delta(G) = 2$ and by Theorem 1, $\gamma_m(C_p) = p - 2\left\lceil \frac{p}{3} \right\rceil = p - \Delta(G)$.

Subcase 2.2: Assume G is a cyclic graph .Then there exists a cycle or block in G which contains cycles. Let $F = \{e_1, e_2, e_3, \dots, e_n\}$ be the edge dominating set in G, such that atleast one of $e_i \in \langle G' \rangle$; $1 \le i \le n$, where G' is a block or a cycle in G. In n(G) the set F gives a minimal dominating set and let $I_1 = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in n(G) and $I_1 \in E(G) \subseteq V[n(G)] - F$ and let $I_2 \subseteq F_1$ where $F_1 = E(G) - F$.Then $(I_1 \cup I_2)$ is a

minimal restrained dominating set of n(G), which gives $|I_1 \cup I_2| = |D_r| = \gamma_m(G)$. Suppose $v \in \Delta(G)$ and atleast two edges which are incident to v are the element of F which gives $p - \Delta(G)$. So one can easily verify that $p - \Delta(G) \ge \gamma_m(G)$.

For equality,

i) If $G \cong P_3$, then $n\bigl(P_3\bigr) \cong C_3$ and $\bigl|D_r\bigr| = 1$, which gives $\gamma_{rn}(G) = p - \Delta(G).$ ii) If $G \cong C_p$ for $3 \le p \le 5$, since for any cycle $n(C_p) \cong C_p$ and $\Delta = 2$. Then $|D_r| = p - \Delta(G)$, which gives $\gamma_m(C_p) = p - \Delta(G)$. iii) If $G \cong K_{1,p}$ for $p \ge 2$ vertices, then $n(K_{1,p}) \cong K_p$. For any star $\Delta = p - 1$ and $|D_r| = 1$, which p = q + 1and also gives $\gamma_{m}(K_{1,p}) = p - \Delta(G).$ iv) If $G \cong K_{p_1,p_2}$ with $p_1, p_2 > 2$ vertices, then in this case $\Delta = \max\{p_1, p_2\}$ and also $p_1 \cup p_2 = V(G)$. Theorem Since 1. $|D_r| = \min\{p_1, p_2\} = V(G) - \max\{p_1, p_2\},\$ which gives $\gamma_m(K_{p_1, p_2}) = \min\{p_1, p_2\} = p - \Delta(G).$

The following Theorem gives the relation between the restrained domination number of n(G) and vertex covering number of G.

2.9 Theorem 9

For any connected (p,q) graph G with p > 2 vertices, $\gamma_m(G) \le \alpha_0(G)$

Proof: Let $B = \{v_1, v_2, v_3, \dots, v_m\} \subset V(G)$ be the minimum number of vertices which covers all the edges , such that $|B| = \alpha_0(G)$ and $E_1 = \{e_1, e_2, e_3, \dots, e_k\} \subset E(G)$, such that $\forall v_i \in B ; 1 \le i \le n$ is incident with e_i , for $1 \le i \le k$. We consider the following cases.

Case 1: Suppose for any two vertices $v_1, v_2 \in B$ and $v_1 \in N(v_2)$. Then an edge e incident with v_1 and v_2 covers all edges incident with v_1 and v_2 . Hence e belongs

to γ_m -set of G. Further for any vertex $v_i \in B$ covering the edge $e_i \in E_1$ incident with a cutvertex v_c of G, e_i belongs to the γ_m - set of G. Thus $\gamma_m(G) \leq |B| = \alpha_0(G)$.

Case 2: Suppose for any two vertices $v_1, v_2 \in B$ and $v \notin N(v_2)$. Then $e_1, e_2 \in E_1$ covers all the edges incident with v_1 and v_2 . Since B consist of the vertices which covers the edges that are incident all the cutvertices of G, the corresponding edges in E_1 covers the cutvertices of G. Thus $\gamma_m(G) \leq |B| = \alpha_0(G)$.

Next we obtain a bound of restrained lict domination number in terms of number of edges and maximum edge degree of G.

2.10 Theorem 10

For any connected (p,q) graph G with $p \ge 3$, $\gamma_m(G) \le q - \Delta'(G)$. **Proof:** We consider the following cases.

Case 1 : Suppose G is non-seperable. Using Theorem 6 and Theorem B, the result follows.

Case 2: Suppose G is separable. Let e be an edge with degree Δ' and let M be a set of edges adjacent to e in G. Then E(G)-M covers all the edges and all the cutvertices of G.But some of the $e'_i s \in E(G)-M$, for $1 \le i \le n$ forms a minimal restrained dominating set in n(G).

Then
$$\gamma_m(G) \leq |E(G) - M|$$
, which gives $\gamma_m(G) \leq q - \Delta'(G)$.

The following Theorem relates the domination number of L(G) and and restrained domination number of n(G).

2.11 Theorem 11

For any connected graph G with p > 2 vertices, $\gamma_m(G) \le q - \gamma [L(G)]$ **Proof:** Let $E = \{e_1, e_2, e_3, \dots, e_n\}$ be the edge set of G and $C = \{c_1, c_2, c_3, \dots, c_n\}$ be the cutvertex set of G, then $V[n(G)] = E(G) \cup C(G)$ and V[L(G)] = E(G), by definition. Suppose $H = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V \lceil L(G) \rceil$ be the set of vertices of degree $\deg(u_i) \ge 2, 1 \le i \le n$. Then $D' \subseteq H$ forms a minimal dominating set of L(G) such that $|D'| = \gamma \lceil L(G) \rceil.$ Further let $H' = \{u'_1, u'_2, u'_3, \dots, u'_i\}; 1 \le i \le n$, where $H' \subseteq H$.Then $H' \cup D'$ forms a minimal restrained dominating set in n(G). Since V[L(G)] = E(G) = q and also $V[L(G)] \subseteq V[n(G)]$.Clearly it follows that $|D' \cup H'| \cup |D'| \le q$. Thus $\gamma_m(G) + \gamma \lceil L(G) \rceil \le q$.

To prove our further result, we give the following two observations.

Observation 1: For connected (p,q) graph G, $\gamma_m(G) \le q-2$.

Proof: Suppose D_r is a restrained dominating set of n(G). Then by definition of restrained domination $|V[n(G)]| \ge 2$. Further by definition of n(G), $q - \gamma_m(G) \ge 2$. Clearly it follows that $\gamma_m(G) \le q - 2$.

Observation 2: Suppose D_r be any restrained dominating set of n(G), such that $|D_r| = \gamma_{rn}(G)$. Then $|V[n(G) + D_r]| \le \sum_{v_i \in D_r} \deg v_i$.

Proof: Since every vertex in $V[n(G)] + D_r$ is adjacent to atleast one vertex in $V[n(G)] + D_r$ contributes atleast one to the sum of the degrees of the vertices of D_r . Hence the proof.

2.12Theorem 12

For any connected
$$(p,q)$$
 graph G ,
 $\frac{q}{\Delta'(G)+1} \leq \gamma_m(G) \leq q - \delta'(G).$

Proof: Let $e \in E(G)$, now without loss of generality, by definition of lict graph, $e = u \in V[n(G)]$ and let D_r be the restrained dominating set of n(G) such that $|D_r| = \gamma_m(G)$. If $\delta(G) \le 2$, then by observation 1, $\gamma_m(G) \le q - 2 \le q - \delta'(G)$. If $\delta'(G) > 2$, then for any edge $f \in N(e)$ and by definition of n(G), $f = w \in N(u)$, $D_r \subseteq \{V[n(G)] - N(u)\} \cup \{w\}$. Then $\gamma_m(G) \le [q - (\delta'(G) + 1) + 1] = q - \delta'(G)$.

Now for the lower bound we have by observation 2 and the fact that any edge $e \in E(G)$ and $\deg e \leq \Delta'(G)$, we have

$$q - \gamma_m(G) \leq \left| V[n(G)] + n(G) \right| \leq \sum_{v \in D_r} \deg v \leq \gamma_m(G) \cdot \Delta'(G)$$

Therefore
$$\frac{q}{\Delta'(G)+1} \leq \gamma_m(G)$$
.

2.13Theorem 13

For any non-trivial connected (p,q) graph G,

$$\gamma_m(G) \ge \left\lceil \frac{q}{\Delta'(G)+1} \right\rceil.$$

Proof: Using Theorem 6 and Theorem A, the result follows.

Finally we obtain the Nordhous - Gaddum type result.

2.14 Theorem 14

Let G be a connected (p,q) graph such that both G and \overline{G} are connected, then

i)
$$\gamma_m(G) + \gamma_m(\overline{G}) \ge \left\lceil \frac{p}{2} \right\rceil$$
.
ii) $\gamma_m(G) \cdot \gamma_m(\overline{G}) \ge \left\lceil \frac{3p}{2} \right\rceil$.

REFERENCES

- [1] C.Berge, Theory of graphs and its applications, Methuen London (1962).
- [2] G.S.Domke , J.H.Hattingh , S.T.Hedetniemi , R.C.Lasker and L.R.Markus , Restrained domination in graphs , Discrete Mathematics, 203, pp.61-69, (1999).

- [3] R.P.Gupta , In :Proof Techniques in Graph Theory, Academic press, New York, (61- 62), (1969).
- [4] F.Harary, Graph theory, Adison Wesley, Reading Mass (1972).
- [5] S.R.Jayaram, Line domination in graphs, Graphs and Combinatorics, (357-363), 3 (1987).
- [6] S.L. Mitchell and S.T. Hedetniemi, Edge domination in trees. In: Proc.8th S.E Conf. on Combinatorics, Graph Theory and Computing, Utilas Mathematica, Winnipeg (489-509),19 (1977).
- [7] O.Ore, Theory of graphs, Amer.Math.Soc., Colloq Publ., 38 Providence (1962).