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Abstract 
The effect of finite volume fraction of suspended particulate matter on axially symmetrical jet mixing of incompressible dusty fluid has 

been considered. However, this assumption is not justified when the fluid density is high or particle mass fraction is large Here we are 

assuming the velocity and temperature in the jet to differ only slightly from that of surrounding stream, a perturbation method  has 

been employed to linearized the equation  those have been solved by using Laplace Transformation technique. Numerical 

computations have been made to discuss the longitudinal perturbated fluid velocity.  
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1. INTRODUCTION 

Many researchers have been studied, in the incompressible 

laminar jet mixing of a dusty fluid issuing from a circular jet 

with negligible volume fraction of SPM. However, this 

assumption is not justified when the fluid density is high or 

particle mass fraction is large. In the present paper, we find the 

magnitude of  Longitudinal perturbated velocity of fluid 

phase. Assuming the velocity and temperature in the jet to 

differ only slightly from that of the surrounding stream, a 

perturbation method has been employed to lineralize the 

governing differential equations. The resulting lineralize 

equations have been solved by using Laplace transformation 

technique. Numerical computations have been made to find  

the Longitudinal velocity profiles of fluid phase.  

 

2.  MATHEMATICAL FORMULATION 

The equation governing the study two-phase boundary layer 

flow in axi-symmetric case can be written in cylindrical polar 

coordinates as  

 

Equation of Countinuity in fluid phase 

    0rv
r

ru
z










     

  (1) 

 Equation of motion in fluid phase 
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Equation of heat in fluid phase  
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To study the boundary layer flow, we introduce the 

dimensionless variables are 

 

 
const,vv,

U

u
u,vv,

U

u
u,

r
r,

z
z 0

2

1

2

1

2

1

pm
pp

p

p
m

m







































 

K

C
p,

p

1

C

C

3

2
,U,

T

T
T,

T

T
T,

p

rT

rs

p

mm

0

p

p

0p

p

p

0







 . 

 

Now considering the flow from the orifice under full 

expansion we can assume that the pressure in the mixing 

region to be approximately constant. Hence, the pressure at the 

exit is equal to that of the surrounding stream. Therefore, both 

the velocity and the temperature in the jet is only slightly 

different from that of the surrounding stream. The coefficient 

of viscosity  and thermal conductivity K are assumed to be 

constant. Then it is possible to write 

110110 ppppp10ppppp110 ,TTT,TTT,vv,uuu,vv,uuu 
 

where the subscripts 1 denotes the perturbed values which are 

much smaller than the basic values with subscripts ‘0’ of the 

surrounding stream, i.e. 
,TT,uu,uu 10pp10 10


 

10 pp TT 
. 
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Using the dimensionless variable and the perturbation method 

to the non linear above equations (1) to (3) becomes 
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The boundary conditions for 11 pp11 vandu,v,u
 are 
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3. METHOD OF SOLUTION 

The governing differential equation (4) have been solved by 

using Laplace transform technique and using the relevant 

conditions from (A) to (C) we get,  

 

Laplace  transform of 
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i.e.   
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    We have 
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Putting all the above values  in equation (7) , it becomes  
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Which is  Linear Partial differential equation. 
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The solution of the above differential equation using Laplace 

Transformation is 
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The Laplace  inverse Transformation of  ( 8 ) gives 
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4. CONCLUSIONS 

Numerical  computation  have  been made by taking  Pr = 0 . 

72, u10 = up10 = T10 = Tp10 =  p10 = 0.1,  = 0.01. The velocity 

and temperature 

at the exit are taken nearly equal to unity.The given figures 

show the profiles of longitudinal perturbation fluid velocity u1 

for  = 0.1, and the  values of Z = 0.25. It is observed that the 

flow of the perturbated fluid velocity decreases with increase 

of the radius r.  
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NOMENCLATURE 

(x, y, z)                        Space coordinates 
(u, v, w)                        Velocity components of fluid phase 

(up, vp, wp)                    Velocity components of particle phase 

 w,v,u                 Dimensionless velocity components of 

fluid phase 

 ppp w,v,u             Dimensionless velocity components of 

particle phase 

K                                   Thermal conductivity 

Re                                                     Fluid phase Reynolds number 

peR                                 Particle phase Reynolds number 

Ec                                                     Eckret number 

T                                   Temperature of fluid phase 
Tp                                                    Temperature of particle phase 
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10 ff C,C                      Skin friction coefficients at the lower 

and upper plates respectively 
Cp, Cs                               Specific heats of fluid and SPM 

respectively 
 


