
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 691

BSP CUSTOMIZATION AND PORTING OF LINUX ON ARM CORTEX

BASED I.MX6 PROCESSOR WITH YOCTO BUILD ENVIRONMENT

Manjunath Joshi
1
, Harsha B.K.

2
, Vivek Kaushik

3
, Harish Mekali

4

1
Student, Electronics and communication Department, CMRIT, Karnataka, India

2
Assistant Professor, Electronics and communication Department, CMRIT, Karnataka, India

3
Project Manager, Software Department, TES Electronic Solutions, Karnataka, India

4
Assistant Professor, Electronics and communication Department, BMSCE, Karnataka, India

Abstract
In the last few years, the need for compact and embedded systems has expanded in all fields. With regard to this development,

ARM development platform is the ideal and practical answer for planning a new product design. ARM platforms carry a generally

positive result regarding speed, accuracy, adaptability, size and cost. Every new embedded design, at the back an operating

system must be modified appropriately for the specifications of the embedded target. It would be a huge added advantage to have

an embedded design running an OS. In particular, this paper underlines the BSP (Board Support Package) customization of Linux

operating system and porting mechanism to FreeScale SabreSD an i.MX6 processor based embedded board with the help of Yocto

build environment. The usual method of going for Linux Target Image Builder (LTIB) is considered old and Yocto is specifically

preferred as Freescale is emphasizing on lighter and easier version. Yocto is a dream project by Freescale. Successful build of

Yocto environment enables customization of kernel, through which images of OS are built and they are ported to target platform.

Keywords: ARM, Bootloader, BSP Customization, Embedded Systems, Filesystem, Linux Ubuntu, Porting OS.

SabreSD, Yocto Build Environment.

---***--

1. INTRODUCTION

Linux has been available for the ARM architecture for many

years now. The original “port” was done by Russell King

and he is still the maintainer through whom all ARM kernel

patches generally pass [7]. Linux is now the preferred

operating system for many embedded devices - mainly due

to the efficient and portable design of the Linux kernel.

Fig-1: Freescale SabreSD board (courtesy: Freescale

Semiconductor, Inc)

An Embedded system is application oriented special

computer system which is accessible on both software and

hardware. It can satisfy the strict necessity of functionality,

consistency, cost, size, and power consumption of the

specific application. With the extremely fast development of

IC design and manufacture, CPUs became inexpensive. Lots

of consumer electronics have embedded CPU and thus

embedded systems became more popular. For example,

Tablets, point-of-sale devices, industrial control panels, or

even your washing machine can be embedded system. There

is a greater extent demand on the embedded system market.

According to the present scenario, the demand on embedded

CPUs is more times as large as general purpose CPUs. As

applications of the embedded systems become more

multifaceted, to build the operating system and preparing

development environment became crucial [9].

1.1 Embedded Linux System

Figure 1 shows the layered architecture based upon the OS

directory structure, and also indicates the how the

application in the device accessing the hardware. The main

concentration is only the Board Support Packages. It

depends on the architecture of that OS. If the architecture is

ARM, then the corresponding will be created according to

the target platform. The BSP is in detailed as follows.

Board Support Packages (BSP) is a collection of the binary,

code, and support files that can be used to create a Linux

kernel firmware and Filesystem images, for a particular

target. In other words a Board Support Package (BSP) is an

implementation specific support code for a given board that

conforms to a given operating system. It has commonly had

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 692

a boot loader that contains the minimal device support to

load the operating system and device drivers for all the

devices in a target system.

BSP in a layman‟s words can be a menu from which he can

choose. The menu contains all the essential features that a

board can have. Customization is specific to a board as to

whether it supports that particular feature or not.

Porting on the other hand is making sure that the software

which was customized, runs on the target platform.

Fig-2: Embedded Linux System layered architecture.

2. THE EMBEDDED OPERATING SYSTEM

The term Operating system is referred to as; it‟s a special

code that acts as an intermediate between the hardware and

the user[5]. The main goals of the operating system is to

make the system is convenient to use (Hiding the hardware

details) and utilizing the resources in efficient manner[1].

The following are the most important factors to choose an

Embedded Operating System[4].

Full source availability, Technical support, real-time

performance, compatibility, customizable, open source, the

processor it supports, purchase price, simplicity/easy to use,

availability of the software development tools, small

memory footprint, middleware/software/drivers and finally

it is also supports the other architectures also. The layered

architecture of basic Embedded Linux is shown in the

Figure 2.

The operating system can be divided into three modules.

They are Bootloader, Kernel, Filesystem.

Bootloader is an initializing code for a particular board,

which is executed at the power on or reset the board. Here

the proposed boot loader is U-Boot boot loader. To boot the

Linux, the boot loader has to load the modules into the

memory, one is the Linux kernel and another one is the

Filesystem [6].

Kernel is a software layer that interfaces with the hardware.

It is responsible for interfacing all peripherals that are

currently connected to the system and running in “user

mode” down to the physical hardware, and allowing

processes, to get information from each other using inter-

process communication[9].

Filesystem is the way in which files are named and where

they are placed logically for storage and retrieval. The DOS,

Windows, Macintosh, and UNIX-based operating systems

all have Filesystems in which files are placed somewhere in

a hierarchical (tree) structure. A file is placed in a directory

or subdirectory at the preferred place in the tree structure.

Filesystems require conventions for naming files. A

Filesystem also includes a format for identifying the path to

a file through the structure of directories.

Fig-3: Basic Embedded Linux Structure

3. BUILDING LINUX KERNEL PLATFORM

This section incorporates to set up the building environment,

install and run the Yocto, and finally generate the output

binary files to prepare the SD card bootable image

compatibles. The main objective of this paper is to make the

Embedded Linux OS according to the target platform; in this

instance, it is the I.MX6 application processor platform,

which is developed by the Freescale Semiconductors. The

required components to build the OS are bootloader, kernel

and Filesystem, Of course the development of the Operating

System image individually by selecting the bootloader,

kernel and Filesystem, but it is very tedious job to do such

kind of selection, as per time to market constraint, vendors

are developing the target image builders. In this paper

proposed building tool is the Yocto. The Yocto project can

be used to develop and deploy the Board Support Packages

for various target platforms.

3.1 Setting up the Host PC

Requirements:

 Ubuntu 12.04 (32/64 bit) OS version on host

machine.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 693

 100 gigabytes of free disk space for building

images.

Note: The Open Embedded build system should be able to

run on any modern distribution that has the following

versions for Git, tar, and Python.

 Git 1.7.5 or greater

 tar 1.24 or greater

 Python 2.7.3 or greater excluding Python 3.x,

which is not supported.

Packages: sudo apt-get install #required packages

3.2 Yocto Build Environment Latest Release

The latest Yocto build can be installed locally on

development system. The user manual can be referred from

Yocto reference manual [10]. This manual explains how to

set up build environment, to configure and to compile.

3.3 Configuration

To fit the Embedded Linux on the hardware platform, the

configuration must be changed according to the type of

application, so that drivers must be included but default

kernel configurations. It also effects the boot time of the

device.

In the kernel some of the configuration changes may

required to the target device. It depends on the application

running on that device and it affects the final footprint of the

binary image. Here some of the configurations like in the

Figure 5, in those some are „Enable the loadable module

support‟, System type: select imx233, Boot options: This is

the one of the significant configuration, for example

console=ttyS0 115200n8: For displaying log screen while

booting the board with the baud rate of 115200, rootwait:

for detecting the devices asynchronously like USB or MMC,

rw: mount root device read write on boot, initrd: to specify

the location of the initial ramdisk, rootfstype: to select the

type of root filesystem .

It depends on the target boot device, if the device is an SD

card, it supports Extended filesystem (ext2) or it may be the

NAND flash it supports Journaling flash Filesystem (jffs2).

lcd_panel=lms430: which shows the type of LCD used and

its resolution. The configured drivers are the Memory

Technology device drivers (MTD), Block Devices, I2C

Support, GPIO Support, Multimedia support, USB Support,

MMC Card support, Real time clock, Sound card support,

Power supply Class support, Watchdog timer support. These

are the required drivers for customizing. The selection of

options either <*> or <M>, modules as per our requirement.

Figure 5 represents the configuration of kernel.

Fig-4: kernel configuration by menuconfig

Configuration is to set up the kernel and u-boot as per the

board specifications of our interest. U-boot is open source

and is available at http://sourceforge.net/projects/uboot/ or

can be downloaded from Freescale community website if

you are a registered user.

4. COMPILATION

4.1 Compiling Kernel Source

We need to set the path to cross compile. Tool chain is a

cross compiler with necessary libraries, binary utilities.

We are using fsl-linaro-toolchain as a cross compiler.

$ export ARCH=arm

$ export CROSS_COMPILE=arm-none-linux-gnueabi-

$ export PATH=$PATH: /opt/freescale/usr/local/gcc-4.6.2-

glibc-2.13-linaro-multilib-2011.12/fsl-linaro-toolchain/bin

$ make sabresd_defconfig

$ make uImage

Output file uImage will be under arch/arm/boot/uImage

4.2 Compiling u-boot

Cross-compiler for arm v9: arm-none-linux-gnueabi-gcc

4.3 Compiling Filesystem

Ubuntu filesystem is freely available on the freescale

community.

Select machine and prepare the bitbake‟s environment

$ MACHINE=imx6qsabresd source setup-environment

build-fb

• bake the image recipe

$ bitbake #Linux image. Bake! The first time can take

several hours.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 694

5. SABRESD BOOT SET UP

5.1 Booting the i.MX 6Dual/6Quad SABRE-SD

Board

The boot modes of the i.MX 6Dual/6Quad SABRE-SD

board are controlled by the boot configuration DIP switches

on the board.

Serial Download Mode for MFGTool

No dedicated boot dips are reserved for serial download

mode on i.MX 6 SABRE-SD boards. Therefore, a tricky

method is used to enter serial download mode. After "HID-

Compliant device" is detected, it means that the board has

entered serial download mode. Insert the SD card into SD3

slot.

Another way to do this is to configure an invalid boot switch

setting, for example, set all the dips of SW6 to off. [11]

5.2 Booting from SD Card from Slot2

The following tables show the dip switch settings for SD2

boot.

Table-1: Boot switch setup for SD2 boot (J500) Switch:

S D1 D2 D3 D4 D5 D6 D7 D8

S6 ON OFF OFF OFF OFF OFF ON OFF

Note: S stands for Switch and S6 is Switch 6.

Table-2: Boot switch set up for SD Card from Slot3

S D1 D2 D3 D4 D5 D6 D7 D8

S6 OFF ON OFF OFF OFF OFF ON OFF

Table-3: Boot switch set up for SD Card from eMMC 4.4

S D1 D2 D3 D4 D5 D6 D7 D8

S6 ON ON OFF ON OFF ON ON OFF

Table-4: Boot switch set up for SD Card from SATA

S D1 D2 D3 D4 D5 D6 D7 D8

S6 ON ON OFF ON OFF ON ON OFF

6. RESULTS

The successful building of the Yocto generates a file, which

is an encrypted file that is bootable on i.mx6 series (i.e.

ARM9 based development boards).

Next few steps explain flashing images and root file-system

to SD card.

6.1 Arm Board Serial Terminal Set-Up

For a Linux machine, a serial terminal such as Minicom can

be used. Minicom is a text-based modem control and

terminal emulation program for Unix-like operating

systems. Gtkterm is a terminal emulator written with GTK+.

It is lightweight and simple that drives serial ports Ubuntu

users wanting a graphical terminal program can install

gtkterm. Later versions which include many bug fixes can

be obtained from the current maintainer's website. On a

Windows PC, you could use HyperTerminal or TeraTerm.

Insert the SD card into the SD card slot of the target board.

Connect the target board to host machine using RS232 serial

cable. Apply power supply to the target board[7].

6.2 Creating Partition in SD Card

Pre-requisite: 4GB SD/MMC card, Card Reader

Flashing Utility: Gparted

Install „Gparted‟ utility and run it after installation.

$ sudo apt-get install Gparted

Select 4 GB SD/MMC Card from drop-down menu (shown

in Fig-5 as 3.64 GiB)

Fig-5: Creating partitions in SD card using Gparted

The card will be mounted and any existing partitions will be

visible. First unmount all the partitions and then delete those

partitions.

Create new partitions.

 Leave 100 MB as Free Space preceding

 Choose Filesystem as ext4

 Give label as rootfs

 Click Add to create the partition

6.3 Requirement

An SD/MMC card reader, it will be used to transfer the boot

loader and kernel images to initialize the partition table and

copy the root filesystem. To simplify the instructions, it is

assumed that a 4GB SD/MMC card is used.

The Linux kernel running on the Linux host will assign a

device node to the SD/MMC card reader.

To identify the device node assigned to the SD/MMC card,

enter the command:

$ cat /proc/partitions

6.4 Copying Root Filesystem to SD Card

First, a partition table must be created. Create a partition; at

offset 16384 (in sectors of 512 bytes) enter command:

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 695

$ sudo fdisk /dev/sdb

The Filesystem format ext3 or ext4 is a good option for

removable media due to the built in journaling. To format

the partition:

$ sudo mkfs.ext3 /dev/sdb1Or $ sudo mkfs.ext4 /dev/sdb1

6.5 Copy the Target Filesystem to the Partition:

$ mkdir /home/user/mountpoint

$ sudo mount /dev/sdb1 /home/user/mountpoint

Extract sabresd_rootfs package to certain directory: extract

sabresd_rootfs.tar.bz2 to /home/user/ mountpoint

$ tar –xvjf sabresd_rootfs.tar.bz2 –C /home/user/mountpoint

Note:Ubuntu filesystem may be freely available for demo

purpose on websites.As an example OS it can be used along

with our customized kernel and U-boot.

6.6 Copying Boot Loader Image to SD Card

Enter the following command to copy the U-Boot image to

the SD/MMC card:

For non padded U-Boot image:

$ sudo dd if=u-boot.imx of=/dev/sdb bs=1k seek=1

For padded U-Boot image:

$ sudo dd if=u-boot.bin of=/dev/sdb bs=1k seek=1 skip=1

The first 1 KB of the SD/MMC card, that includes the

partition table, will be preserved.

6.7 Copying Kernel Image to SD Card

Copy the kernel image to the SD/MMC card:

$ sudo dd if=uImage of=/dev/sdb bs=1M seek=1

This will copy uImage to the media at offset 1 MB (bs x

seek = 1 M x 1 = 1MB).

Fig-6: Kernel image in host system

Fig-7: Linux boot process on Target board (4 penguins for

quad core processor).

The boot time is an important factor. It depends on the

number of features supported by the board which extends

size of the kernel and the filesystem. The kernel boot with

filesystem usually takes less than a minute.

Fig-8: Example filesystem linux ubuntu on target board.

7. CONCLUSIONS

This paper discussed about Yocto build environment and

was successfully installed on the host system Ubuntu 12.04

LTS. U-boot, Kernel and filesystem were successfully

configured and cross-compiled as per Freescale Sabresd

embedded board specifications. At the end as an example

Ubuntu filesystem was ported to the same board. The boot

time recorded was 32 seconds.

ACKNOWLEDGEMENTS

I would like to thank my master and my parents.

REFERENCES

[1]. De Goyeneche, J.-M, De Sousa, E.A.F, “Loadable

Kernel Modules”, Software IEEE, Vol16, Issue1, pp:65-71,

Jan/Feb- 1999

[2]. Wooking and Tak-Shing, “Porting the Linux kernel to a

new ARM Platform”, Aleph One, vol. 4, summer 2002.

[3]. Vincent Sanders, “Booting ARM Linux”,

rev.1.10,June2004.http://www.simtec.co.uk/products/SWLI

NUX/files/booting_article.html

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 696

[4]. Hu Jie ; Zhang Gen-bao, “Research transplantation

method of embedded linux kernel based on ARM platform”,

Information Science and Management Engineering (ISME),

2010 International Conference, Vol2, pp:35-38, 7-8. Aug

2010.

[5]. Chun-yue Bi; Yun-peng Liu; Ren-fang Wang;

“Research of key technologies for embedded Linux based

on ARM”, Computer Application and System Modeling

(ICCASM),2010 International Conference, 22-24 Oct. 2010,

E-ISBN : 978-1-4244-7237-6.

[6]. The DENX U-Boot and Linux Guide, available at

www.denx.de

[7]. Pratyusha Gandham, Ramesh N.V.K “Porting the linux

kernel to an arm based development board”, International

Journal of Engineering Research and Applications (IJERA),

Vol. 2, Issue 2,Mar-Apr 2012, pp.1614-1618.

[8]. Divya Sharma, Kamal kanth, “Porting the Linux Kernel

to Arm System-On-Chip And Implementation of RFID

Based Security System Using ARM”, International Journal

of Advanced Research in Computer Science and Software

Engineering (IJARCSSC), Vol3, issue5, May-2013.

[9]. K.Eshwar Kumar, M.Kamaraju, Ashok Kumar Yadav “

Porting and BSP Customization of Linux on ARM

Platform”International Journal of Computer Applications

(0975 – 8887) Volume 80 – No 15, October 2013.

[10]. http://www.yoctoproject.org/docs/1.4/ref-manual/ref

manual.html#required-packages-for-thehost-development-

system.

[11]. i.MX 6Dual/6Quad BSP Porting Guide , Rev.

L3.0.35_1.1.0, 01/2013, Freescale Semiconductor,inc.

BIOGRAPHIES

 Manjunath Joshi completed his B.E. from

VTU Belgaum, Karnataka, India. He is

currently pursuing Masters at CMRIT

Bangalore and is working as an intern at

TES Electronic Solutions, a German based

Embedded Design Company.

 Harsha B.K is currently working as an

assistant professor at CMRIT Bangalore.

He did his masters from VTU Belgaum.

 Vivek Kaushik completed his bachelors

from Chandigarh. He has ten years of

experience in embedded field and is

currently Project Manager at TES

Electronic Solutions.

Harish Mekali has graduated from PESIT

Bangalore. He has been key figure in

many research works at BMSCE

