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Abstract
Non-parametric measures give the amount of information supplied by the data for discriminating in favor of a probability
distribution P against another Q , or for measuring the distance or affinity between P and Q .

There are several generalized functional divergences, such as: Csiszar divergence, Renyi- like divergence, Bregman divergence,
Burbea- Rao divergence etc. all. In this paper, a non-parametric hon symmetric measure of divergence which belongs to the
family of Csiszar’s f~divergence is proposed. Its properties are studied and get the bounds in terms of some well known divergence

measures.
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1. INTRODUCTION

Let T :{P:(pl,pz, Dy ) B >0, D1, :1},n22
i=1

be the set of all complete finite discrete probability
distributions. If we take p,>0 for somei=12,3,...,n

then we have to suppose that 0 f (0) =0 f (%) =0.

Csiszar [2], given the generalized f- divergence measure,
which is given by:

(1.1)

Where f :(O,oo) — R (set of real no.) is real, continuous
and convex function and

=(Pys Pyr Pyes Py ) Q=(0, Gy, G5, G, ) € T

where [; and (; are probability mass functions. Many

known divergences can be obtained from this generalized
measure by suitably defining the convex function f. Some of
those are as follows:

2 K(P,Q):ZPJOQ[%] = Kullback- Leibler
i=L i
divergence measure [4] 1.2)

n

- Zz(PaQ):z(pi_qi) _

Chi- Square
i=1 i
divergence measure [5] (1.3)
LI
& h(P,Q)= = Hellinger
—1
discrimination [3] (1.4)
n p_a
o (P Q) = Z—;_l ,a>1 = Renyi’s “a”
i=1 Y
order entropy [6] (1.5
n
o B(P,Q)=Y m = Bhattacharya
i=1
divergence measure [1] (1.6)

o
°n

Relative information of type “s” [9]

% o, (P,Q) [ J {pr 1s—11,s,¢0,1and5eR

*

(1.7
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Particularly

lim @, (P,Q) =K (P,Q), lim @, (P,Q)=K(Q.P)
(1.8)

Where K (P, Q)is given by (1.2).

. G(P,Q)=i(p‘;qi]'(’g[piz;qij )

i=1 i
Relative AG Divergence [7] (1.9)

Similarly, we get many others divergences as well by
defining suitable convex function

2. NEW
MEASURE

In this section, we shall obtain a new divergence measure
corresponding to new convex function, and will study the
properties.

INFORMATION DIVERGENCE

The following theorem is well known in literature [2].

Theorem 1: If the function f is convex and normalized, i.e.,

f (1) =0, then C, (P,Q)and its ad joint C, (Q, P)are
both non-negative and convex in the pair of probability
distribution (P,Q)e ", xT, .

Let f: (0, ) — R, be a mapping, defined as:

f(t)= (t _tl)A te(0,0) 2.1)
And
- @iy, -2 @2 o)

Properties of function defined by (2.1), are as follows:
& Since f" (t) >0Vte (O,oo) = f (t) is a convex
function.
% Since f (1) =0=>f (t) is a normalized function.

%  Since f’(t)<0 at (0,1) and f'(t)>0 at
(1,00):> f(t) is monotonically decreasing in
(0,1) and monotonically increasing in(1,0), and

f'(1)=0.
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Fig1: Graph of convex function f (t)

Now, put (2.1) in (1.1), we get the following new
divergence:

Cf(P.Q)=V*(P,Q):iM

2 (2.3)
i1 PG

Properties of divergence defined by (2.3), are as follows:
s In view of theorem 1, we can say that

V*(P,Q) > 0 and convex in the pair of probability
distribution (P, Q) e ", x T, .

% V'(P,Q)=0if P=Qor p,=q, (Attains its
minimum value).

< Since V*(P,Q) 2V’ (Q, P):V*(P,Q) is non-

symmetric divergence measure w.r.t. P & Q.

Figure 2: Comparison of divergence
. measures

V*(P.Q)

- - - - Relative
Avrithmetic
Geometric div.

. . R Kullback-
Leibler div.
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o = N W ) [S2 BN
1

Figure 2 shows the behavior of V *(P,Q) . Relative
Arithmetic-Geometric divergence G(P,Q) and Kullback-
Leibler divergence K(P,Q) .
p,=(a,l-a)and g, =(1—a,a) whereae(0,1) . It

We have considered

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 666




IJRET: International Journal of Research in Engineering and Technology

elSSN: 2319-1163 | pISSN: 2321-7308

is clear from figure 2 that the new measureV ™ (P, Q) has a

steeper slope then G (P,Q) and K (P,Q).

3. CSISZAR’S FUNCTIONAL DIVERGENCE
AND INEQUALITIES

The following theorem is well known in literature [8].

Theorem 2: Let f : 1 = R, — R (I is an open interval) be

a mapping which is normalized, i.e., f (1) =0 and suppose
that

l. f is twice differentiable on

(a,ﬂ),0<a£1£ﬂ<oowitha;tﬂ.

1. There exist real constants M,M such that

m<M and m<t**f"(t)<M Vte(a,f)and seR

and

fP,Qel, withO<a <P < f<ooVi=123...n
G
, then

o (P, Q)<

And

mn (P.Q)-

C,;(P.Q) < M® (P,Q) @31

a,(P.Q)|<C,(P.Q)-C, (P.Q)<M
(3.2)

Where

C,(P.Q)=C (Fg J—Cf,(P,Q):Zn:(pi q) fr[&]

=) Qi
(3.3)

1p0)=,[2.p|c, ooy Sia-a)2) oo

(3.4)

And C, (P,Q),CD
respectively

S(F’,Q) are given by (1.1) and (1.7)

4. BOUNDS OF NEW
DIVERGENCE MEASURE

INFORMATION

In this section, we derive bounds forV*(P,Q) in terms of

the well known divergences in the following propositions at
s=2,1,1/2,0and —1, by using the theorem 2.

[7.(P.Q)-2,(P.Q)]

4.1 Proposition 4.1(at s=2)

Let x*(P,Q) and V *(P,Q)be defined as in (1.3) and
(2.3) respectively. Then, we have
i, IfO0<a <1, then

0<V'(P,Q) <max. {( a1)2 (32 +20+1), i _31)2 (3ﬂ2+2ﬂ+1)} 7(PQ)

p

0<V (P,Q)-V'(P,Q) (4.1)
(-1 . BY (o z
gmax.{ pe (30: +2a+1), 5 (3ﬁ +2ﬁ+1) 7 (P.Q)
(4.2)

ii. Ifa =1, then

03v*(P,Q)s%(3ﬂ2+2ﬂ+1);/(P,Q) (4.3)

p-1)
ﬂS

0<V (P,Q)-V'(P,Q)<
(4.4)

(36°+2p+1) #*(P.Q)

Proof:
Firstly, put s=2 in (1.7) and (3.4) respectively, we get

Qs(P.Q)=;;pi 1—2;2 -2p+4= ;(p'qiq') ;2(PQ)

(4.5)

n

7 (PQ)-Y(p-a) 23 p SRy

i1 4 = G i1 0

n . — (. 2
—Zp' —2p,+0; = Z—(p' a)
i1 G i=1 G
(4.6)

(P.Q)

And by putting f'(t)in (3.3), we get

0:(p0)vi (5.2 i o) S g

(4. 7)

Let g(t)=f"(t)=

putting s=2 int* " f "(t))

(3t +2t+1) (After
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1
Then g'(t):—,g (t):—

Ifg'(t)=0=>t"-1=0=>t=1-1
It is clear that g (t) is monotonic decreasing on (0, 1) and

monotonic increasing on [1, o).

Also g (t) has minimum value at t=1, since

9"(1)=24>0s0

m= inf g() g(1)=0 (4.8)

te(Ooo

Now, we have two cases:
i. IfO0< a <1, then

= sup g(t)=max{g(a),9(B)}

te(a,f)
:max{z(o;zl) (3a2+2a+1),2(ﬂﬁ:1) (3ﬂ2+2ﬁ+1)}
(4.9)
ii. Ifa =1, then
M = sup g(t):w(3ﬂ2+2ﬂ+l) (4.10)
te[1.8) B

The results (4.1), (4.2), (4.3) and (4.4) are obtained by using
(2.3), (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) in 3.1 and 3.2.

4.2 Proposition 4.2(at s=1)

Let K(P,Q) and V *(P,Q)be defined as in (1.2) and
(2.3) respectively. Then, we have

i. If 0<a <1, then

Ogv*(P,Q)gmax.{@(soﬂwml),z(ﬁ—l
a s
(4.12)
<V’ (P,Q)-V"(P.Q)
2(a-1) . , 2(8-1) .,
smax.{%(sa +2a+1), (ﬂﬂ 2 ) (3p +2/3+1)}K(Q,P)
(4.12)
ii. If @ =1, then
0<V'(P,Q)< ([; 1) (38 +28+1)K(P,.Q)  (4.13)

0<V:(P.Q) S

-V'(P,Q)< (38 +2p+1)K(Q,P)

(4.14)

Proof:
Firstly, put s=1 in (1.7) and (3.4) respectively, we get

lima, (P.Q)=Y p Iog(g'j K(P.Q) (415)

s—1 i i

imn, (P,Q) Zpllog[g'}rq,log(z'j K(P.Q)+K(Q.P)

i=1 i i

(4.16)
I ()

Let  g(t)=tf (t):t—2(3t +2t+1) (After
putting s=1 int**  "(t))
Then

4(t_1) 3, 42 12(t4+1)
g'(t)= e (3t +t +t+1),g"(t):t—4
If

g'(t)=0=(t-1)(3° +t* +t+1)=0=1t=1-0.63
It is clear that g (t) is monotonic decreasing on (0, 1) and

monotonic increasing on [ 1, o).

Also g (t) has
9"(1)=24>0s0

minimum value at t=1, since

m=inf g(t)=9g(1)=0

te(0,%) (4.17)

2 Now, we have two cases:

(8A” + 21502 ) K Ri@)

M = sup g(t)=max{g(a).9(5)]
=max{2(0;21)2 (322 +2a:+1), (/; ) (35 +26+1)
(4.18)
ii. Ifa =1, then

M = sup g(t):w(3ﬁ2+2ﬂ+l) (4.19)
te[L.f) B
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The results (4.11), (4.12), (4.13) and (4.14) are obtained by
using (2.3), (4.7), (4.15), (4.16), (4.17), (4.18), and (4.19) in
3.1and 3.2.

4.3 Proposition 4.3(at s=1/2)

Let h(P,Q),Ra(P,Q),B(P,Q)and V*(P,Q) be
defined as in (1.4), (1.5), (1.6) and (2.3) respectively. Then,
we have

i If 0<a <1, then

sv*(P,Q)Smax[S((;[[Tl)z(w +2a+1), il )2(3/3 +2ﬂ+1)]( Q)

ﬂ3/2
(4.20)
<V, (P.Q)-V'(P.Q)
8a-1), , . . 8(p-1)

<ma (23’2)(30 #2041, (/; )(3/3 +2ﬂ+1)”{ (QP)- (,Q)}-h(P,Q)}

(4.21)
ii. If ¢ =1, then

OSV*(P,Q)SS(ﬁTl)(Bﬁ +28+1)h(P,Q)

(4.22)

0<V:(P,Q)-V"(P,Q)

S8(23721) (3ﬂ2+2ﬂ+1)B{R3,2(Q,P)—B(P,Q)}—h(P,Q)}

(4.23)

Proof:
Firstly, put s=1/2 in (1.7) and (3.4) respectively, we get

=4iznl“1—\/ﬁ=2i2—2\/ﬁ
—ZZpﬁLqI ZM 4z(ﬁ \F)

(4.24)

(P.Q)

n(P.Q) :Ziz;:(qi B pi)\/i;zzzg[zz_z_MJzz[Rm @ P)_B(P'Q”

(4.25)

Let g(t)=t

E 2(t-1)°
2 ( 3 ) (After

f(t)=
t2

putting s=1/2 int*™* f *(t))

(3t2 +2t+1)

3(t-1)

| w

Theng'(t)= (5t3+t2+t+1),g (t)=

t2 2t

(15t 4t3+5)

N~

IFg'(t) =0=>(t-1) (5t° +t* +t+1)=0=t=1,-0.53

It is clear that g (t) is monotonic decreasing on (0, 1) and
monotonic increasing on [ 1, o).

Also g () has minimum value at t=1, since
9"(1)=24>0s0
m= tei(r('>,fw) g(t)=g(1)=0 (4.26)
Now, we have two cases:
i. If 0<a <1, then
M = sup g(t)=max{g(«).g (/)]

2 2
= max 2((1;1) (3052 +2a +1), 2(’8;1) (3,32 +2ﬁ+1)

a? IBE
(4.27)

ii. Ifa =1, then

M = sup g(t)=w(3ﬂ2 +2p+1)  (4.28)

te[1,8) ﬂi

The results (4.20), (4.21), (4.22) and (4.23) are obtained by
using (2.3), (4.7), (4.24), (4.25), (4.26), (4.27), and (4.28) in
3.1and 3.2.

4.4 Proposition 4.4(at s=0)
Let K(P,Q),ZZ(P,Q) and V*(P,Q) be defined as
in (1.2), (1.3) and (2.3) respectively. Then, we have

i. If 0<a <1, then

2(0‘—_1)2(3052 +2a+1), 216-1)

0<V'(P,Q) < max - ;

(36°+28+1)¢K(Q.P)

(4.29)
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<V*(P,Q)-V Now, we have two cases:
) ?) (PQ) i. If 0<a <1, then
< max M(305 +20+1), 161 (3% +28+1)p{(Q.P)-K(Q.P)]
’ 5 PRI M= swp g(t)=max{g(a).9(B)]
(4.30) ) 2
_ max{z(a_l) (30 +2a+1), 26-Y) (3ﬂ2+2ﬁ+1)}
i.  Ifa=1, then “ ( ’;
4.36
. 2(8-1) . ,
<V (P,Q)< ; (34° +28+1)K(Q,P) i et ten
(4.31) —1)?
M = sup g(t):%(sﬂ2 +2/+1)
2 te[1,8)
Osv;(P,Q)—V*(P,Q)sz d ; Y (38" +28+1){ ' (Q.P)-K(Q.P)} (4.37)
(4.32) The results (4.29), (4.30), (4.31) and (4.32) are obtained by
using (2.3), (4.7), (4.33), (4.34), (4.35), (4.36), and (4.37) in
Proof: 3.1and 3.2.

Firstly, put s=0 in (1.7) and (3.4) respectively, we get o
4.5 Proposition 4.5(at s =-1)

limo, ( 1Q)=i% |og(&j K (Q,P) Let XZ(P,Q),Ra(P,Q)and V *(P,Q) be defined as
s=0 i=1 Pi in (1.3), (1.5) and (2.3) respectively. Then, we have

(4.33)
i. If 0<a <1, then

n

n(PQ) Z —q zq' 12 —2q,+p z

m b i1 B P R
(4.34)

0<V" (P.Q)<max|(a-1 (30 + 2a+1),(B-1) (34" +26+1)| (Q.P)

2(t-1) 0<V (P,Q)-V'(P,Q) (4.38)

Let g(t)=t*f"(t)= " (3t +2t+1) (After putting

s=0int?* f"(t))

<max|(a-1) (30" +20:+1) (-1 (38°+ 26+ R.(Q.P)-R(@P)- (0 P)

Then (4.39)

g'(t)= 2(;_1) (9t° +1° +t+1), g”(t)=t£3(36t“ —~16t° +4j; If & =1 then

If 0<V*(P,Q)<(B8-1) (3% +28+1) 1*(Q.P)
g'(t)=0=(t-1)(9t°+t* +t+1)=0=1t=1,-0.43 (4.40)

It is clear that g (t) is monotonic decreasing on (0, 1) and OSV;(P,Q)—V*(P,Q)S(ﬂ—l)2(3ﬂ2+2ﬂ+1){R3(Q, P)—RZ(Q,P)—}(Z(Q, P)}

monotonic increasing on [1, o). ( )
441

Also g () has minimum value at t=1, since

" _ Proof:
9 (l) =24>0s0 Firstly, put s=-1 in (1.7) and (3.4) respectively, we get

m=inf g(t)=g(1)=0 (4.35) ¢ v (p-g) 1
te(0,20) 0,(P,Q)= 2; Zq. _ 2;(9. pql) :EZZ(Q,P)

P i1 P i
(4.42)
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ol e

:1 i i
(4.43)

Let g(t)=t*f"(t)=2(t- )(
s=-1int** f "(t))

+2t+1) (After putting

Then g'(t) =24t (t—1),9"(t)=72t>—48t
Ifg’(t)=0=1t=0,1

It is clear that g (t) is monotonic decreasing on (0, 1) and
monotonic increasing on [ 1, o).

Also g (t) has minimum value at t=1, since
9"(1)=24>0s0

m=inf g() g(1)=0 (4.44)

te(O 0
Now, we have two cases:

i. If 0<a <1, then

M = sup g(t)=max{g(a),g(B)}

te(af)
= max {2(e-1)' (30 +2a-+1),2( B-1)' (34° +2+1)|
(4.45)
. If ¢ =1, then
M = sup g(t)=2(5-1)"(34° +28+1)
te[1,5)

(4.46)

The results (4.38), (4.39), (4.40) and (4.41) are obtained by
using (2.3), (4.7), (4.42), (4.43), (4.44), (4.45), and (4.46) in
3.1and 3.2.
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