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Abstract 
Non-parametric measures give the amount of information supplied by the data for discriminating in favor of a probability 

distribution P against another Q , or for measuring the distance or affinity between P and Q . 

 

There are several generalized functional divergences, such as: Csiszar divergence, Renyi- like divergence, Bregman divergence, 

Burbea- Rao divergence etc. all. In this paper, a non-parametric non symmetric measure of divergence which belongs to the 

family of Csiszár’s f-divergence is proposed. Its properties are studied and get the bounds in terms of some well known divergence 

measures. 
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Where  : 0,f R  (set of real no.) is real, continuous 

and convex function and 

   1 2 3 1 2 3, , ..., , , , ...,n nP p p p p Q q q q q  ∈ Γn, 

where ip  and iq  are probability mass functions. Many 

known divergences can be obtained from this generalized 

measure by suitably defining the convex function f. Some of 

those are as follows: 
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Particularly 
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Where  ,K P Q is given by (1.2). 
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Similarly, we get many others divergences as well by 

defining suitable convex function 

 

2. NEW INFORMATION DIVERGENCE 

MEASURE 

In this section, we shall obtain a new divergence measure 

corresponding to new convex function, and will study the 

properties. 

 

The following theorem is well known in literature [2]. 

 

Theorem 1: If the function f is convex and normalized, i.e.,

 1 0f  , then  ,fC P Q and its ad joint  ,fC Q P are 

both non-negative and convex in the pair of probability 

distribution  , n nP Q    . 

 

Let f: (0, ∞) → R, be a mapping, defined as: 
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Properties of function defined by (2.1), are as follows: 

 Since      0 0,f t t f t      is a convex 

function. 

 Since    1 0f f t  is a normalized function. 

 Since   0f t  at  0,1 and   0f t  at 

   1, f t  is monotonically decreasing in 

 0,1 and monotonically increasing in  1, , and

 1 0f   . 

 
 

Fig1: Graph of convex function  f t
 

 

Now, put (2.1) in (1.1), we get the following new 

divergence: 
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Properties of divergence defined by (2.3), are as follows: 
 In view of theorem 1, we can say that 

 * , 0V P Q  and convex in the pair of probability 

distribution  , n nP Q   . 

  * , 0 i iV P Q if P Q or p q   (Attains its 

minimum value). 

 Since    * *, ,V P Q V Q P   * ,V P Q is non- 

symmetric divergence measure w.r.t. &P Q . 
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is clear from figure 2 that the new measure  * ,V P Q has a 

steeper slope then    , ,G P Q and K P Q . 

 

3. CSISZAR’S FUNCTIONAL DIVERGENCE 

AND INEQUALITIES 

The following theorem is well known in literature [8]. 

 

Theorem 2: Let :f I R R  (I is an open interval) be 
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that 
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 , , 0 1 with          . 

II. There exist real constants ,m M such that

   2  " ,s tm M and m t f M t and s R      

and 

 

If , 0 1,2,3...,i
n

i

p
P Q with i n

q
       

, then 

 

     ,  ,  ,  s f sm P Q C P Q M P Q          (3.1) 

 

And 

 

           , , , , , ,
s ss f sm P Q P Q C P Q C P Q M P Q P Q           

                             (3.2) 

 

Where 

     
2

1

, , ,
n

i
f f i i

i i

pP
C P Q C P C P Q p q f

Q q
  



  
      

   


                                                                  (3.3) 

 

       
1

2
1

1

, , , 1 , 1
s s

s
n

i
s i i

i i

pP
P Q C P C P Q s p q s

Q q






  



  
       

   


                                        (3.4) 

 

And    , , ,f sC P Q P Q are given by (1.1) and (1.7) 

respectively 

 

4. BOUNDS OF NEW INFORMATION 

DIVERGENCE MEASURE 

In this section, we derive bounds for  * ,V P Q in terms of 

the well known divergences in the following propositions at

2,1,1/ 2, 0 1s and  , by using the theorem 2. 

 

 

4.1 Proposition 4.1(at s=2) 

Let    2 ,   * ,P Q and V P Q be defined as in (1.3) and 

(2.3) respectively. Then, we have 
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ii. If 1  , then 
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Proof: 

Firstly, put s=2 in (1.7) and (3.4) respectively, we get 
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And by putting  f t in (3.3), we get 

 

   
 

 
 

42
* * *

2
1

, , , 3
n

i i

f f i i

i i i

p qP
V P Q V P V P Q p q

Q p q
  



 
    

 


                                                            (4.7) 

 

Let     
 

 
2

2

3

2 1
3 2 1

t
g t f t t t

t


   

 
(After 

putting s=2 in  2 "st tf
) 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org                                                                               668 

Then  
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It is clear that g (t) is monotonic decreasing on (0, 1) and 

monotonic increasing on [1, ∞).
 

 

Also g (t) has minimum value at t=1, since 

 1 24 0g    so 
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The results (4.1), (4.2), (4.3) and (4.4) are obtained by using 

(2.3), (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) in 3.1 and 3.2. 

 

4.2 Proposition 4.2(at s=1) 

Let    ,   * ,P Q and V PK Q be defined as in (1.2) and 

(2.3) respectively. Then, we have 
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Proof: 

Firstly, put s=1 in (1.7) and (3.4) respectively, we get 
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It is clear that g (t) is monotonic decreasing on (0, 1) and 

monotonic increasing on [1, ∞).
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The results (4.11), (4.12), (4.13) and (4.14) are obtained by 

using (2.3), (4.7), (4.15), (4.16), (4.17), (4.18), and (4.19) in 

3.1 and 3.2. 

 

4.3 Proposition 4.3(at s=1/2) 

Let        ,R, * ,,B  , ,ah P Q PP Q and V PQ Q be 
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Proof: 

Firstly, put s=1/2 in (1.7) and (3.4) respectively, we get 
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It is clear that g (t) is monotonic decreasing on (0, 1) and 

monotonic increasing on [1, ∞).
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The results (4.20), (4.21), (4.22) and (4.23) are obtained by 

using (2.3), (4.7), (4.24), (4.25), (4.26), (4.27), and (4.28) in 

3.1 and 3.2. 

 

4.4 Proposition 4.4(at s=0) 
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It is clear that g (t) is monotonic decreasing on (0, 1) and 

monotonic increasing on [1, ∞).
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The results (4.29), (4.30), (4.31) and (4.32) are obtained by 

using (2.3), (4.7), (4.33), (4.34), (4.35), (4.36), and (4.37) in 

3.1 and 3.2. 

 

4.5 Proposition 4.5(at s =-1) 
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The results (4.38), (4.39), (4.40) and (4.41) are obtained by 

using (2.3), (4.7), (4.42), (4.43), (4.44), (4.45), and (4.46) in 

3.1 and 3.2. 
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