
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 480

HARDWARE IMPLEMENTATION OF AES ENCRYPTION AND

DECRYPTION FOR LOW AREA & POWER CONSUMPTION

Pritamkumar N. Khose
1
, Vrushali G. Raut

2

1
Dept. of Electronics and Telecommunications, Sinhgad College of Engineering, Pune, India

2
Dept. of Electronics and Telecommunications, Sinhgad College of Engineering, Pune, India

Abstract
An AES algorithm is implemented on FPGA platform to improve the safety of data in transmission. AES algorithms can be

implemented on FPGA in order to speed data processing and reduce time for key generating. We achieve higher performance by

maintaining standard speed and reliability with low area and power. The 128 bit AES algorithm is implements on a FPGA using

VHDL language with help of Xilinx tool.

Keywords— Advanced Encryption Standard (AES), Field-Programmable Gate Array (FPGA), VHSIC Hardware

Description Language (VHDL)

--***--

1. INTRODUCTION

There is increasing need of information data in Computer

Network and Communication Technology. This data is

handled by public networks and it is vulnerable. So

cryptography becomes important for such sensitive data

which should be kept secure and safe against automated

spying or hacking.

AES can be implemented in software or hardware but,

hardware implementation is more suitable for high speed

applications in real time. Main goal AES hardware

implementation is high throughput design and low-area

design work at highest operating frequency. The latter

devotes most efforts to minimize size of the design and

lower the power consumption.

The rest of paper is organized as follows. Section II will

present a brief overview of AES and previously proposed

existing work done. In section III, a proposed work contains

Sbox architecture, Key Expansion module, and AES

encryption & decryption crypto core. Section IV will

provide experimental results of AES encryption and

decryption is compare with previously technique. Finally,

section V will provide the conclusion of our proposed

design.

2. LITERATURE REVIEW

AES was standardized by National Institute of Standards

and Technology (NIST) in 2001 became Federal

Information Processing Standard FIPS-197. Where Rijndael

algorithm by Joan Daeman and Vicent Rijimen was selected

as standard AES algorithm. The AES is private or

symmetric block cipher which uses the same key for

encryption and decryption is more suitable for faster

implementation. The AES is a symmetric key for both

encryption and decryption. AES cryptography algorithm is

capable of encrypting and decrypting block size 128 bit data

using cipher keys of 128, 196 or 256 bits (AES128, AES196

and AES256) [6].

The proposed design has ability to defend against Fault and

glitch attacks with some large area than conventional design.

Also proposed S-box is capable to reduce hardware

resources and defend against glitch attacks [1].AES

algorithm can resist any kinds of password attacks with a

strong practicability in information security and reliability.

So AES is widely adopted for various applications from

high-end computers to low power portable devices.

Numerous AES hardware architecture use in computer

processor, SAN & Wi-Fi network, ATM, cellular phones

and digital video recorders.

3. PROPOSED WORK

AES algorithm is symmetric block cipher that processes the

state arraying from 128 bits data block using a key of 128,

192 or 256 bits length repeatedly. In encryption process

round function consists of four different transformations-

SubBytes, ShiftRows, MixColumns and AddRoundKey but

last round function without MixColumns transformations. A

ShiftRows transformations are truly dependent on state-wise

operation of cyclic row shifting and MixColumns select 4

byte column operation done at simultaneously. Similarly

inverse chipper decryption process round function consists

of four different transformations- InvSubBytes,

InvShiftRows, InvMixColumns and AddRoundKey, but last

round function without InvMixColumns transformations.

Key Expansion or Schedule generation module is a common

unit in AES encryption and decryption core. Key Expansion

used to generate a series of Round Keys from the Cipher

Key. A State is two-dimensional array of 4 x 4 size having

8 bytes consists of four rows contain block length divided

by 32 is presented in hexadecimal format.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 481

Fig. 1: AES standard encryption & decryption Algorithm

3.1 S-box Architecture

S-Box for SubByte and InvSubByte operation is implement

using two method - Conventional BRAM implementation or

combinational logic. Conventional BRAM has all pre-

computed 256 values are stored in a ROM based lookup

table and input byte wired to ROM’s address bus. But

BRAM method suffers from unbreakable delay as fixed

access time for read and write operation and low latency due

to ROM access time To increase throughput parallel

ROMs are leading to large size of chip area requires

high amount of memory. Therefore S-box transformation

through composite field arithmetic is more suitable for low

latency with reduction in area against. A more suitable

second method to implementing S-Box is using

combinational logic. It has advantage like small area

occupancy and pipelined for increased performance in clock

frequency. In this paper S-Box architecture based on

combinational logic is present.

It is computed by multiplicative inverse in GF(2
8
) followed

by an affine transformation. Where InvSubByte

transformation compute using inverse affine transformation

is applied first then multiplicative inverse as shown in figure

2.

The Affine Transformation (AT) and inverse Affine

Transformation (AT
-1

) are computed using following

equation

Fig. 2: SubByte and InvSubByte transformation in Sbox

I

II

Both Sbox and InvSbox transformations have same

multiplicative inversion module. GF multiplication is

compute by decomposing complex GF(2
8
) to lower order

fields as GF(2
1
) and GF(2

2
) also GF((2

2
)

2
). In figure 3

computation of multiplicative inverse in composite

fields cannot be directly applied to GF(2
8
) multiplication.

Fig. 3: Multiplicative inversion module for S-Box [4]

Addition of GF(2
4
) elements is compute using simply

bitwise XOR operation. Multiplicative Inversion (X
-1

) is

inverse of individual bits compute from larger equation so

that pre-computed value can be used [5]. The Isomorphic

Mapping (ɗ) and Inverse Isomorphic Mapping (ɗ
-1

)

composite field are compute using following equation

A GF(2
4
) Squaring operation compute using below equation

S2 = ɗ3 XOR ɗ2; S1 = ɗ2 XOR ɗ1;

S0 = ɗ3 XOR ɗ1 XOR ɗ0; S3 = ɗ3;

Multiplication with constant (λ) is generate by substitute

irreducible polynomial as shown in below expression.

λ3 = S2 XOR S0; λ1 = S3; λ0 = S2;

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 482

λ2 = S3 XOR S2 XOR S1 XOR S0;

Multiplication of GF(2
4
) contain addition and

decomposition multiplication operations in GF(2
2
) as shown

in figure 4. Where

Fig. 4: Hardware implementation of GF(2
4
) multiplication

Fig. 5: Hardware implementation of GF(2
2
) multiplication

Multiplication with constant ($) is derived from equation

$1 = q1 XOR q0; $0 = q1;

A figure 5 describe Multiplication of GF(2
2
) is made only

using through logical AND & XOR gate.

3.2 Key Expansion

Key Expansion routine to perform key scheduling which

generate a series of Round Keys from the cipher key as

shown figure 6. SubWord present in Key Expansion routine

that takes a 4-byte input word gives 4-bytes output word

using Sbox. The RotWord function performs a cyclic

permutation on input word gives cyclic right shifted 4 bytes

output word. Rcon is array of bytes in a word having fixed

logical value having size of 128 bit [2]. A 128 bit Key

register is fixed signal used to temporal storage of cipher

key computed for each round of operation. Here key

expansion module generate 10 number of 128 bit size Partial

key for each round of operation.

Fig. 6: Block diagram of Key Expansion

Fig. 7: Block diagram of AES Encryption

3.3 AES Encryption

AES Encryption has following subsequent steps are:

SubByte, ShiftRows, MixColumns and AddRoundKey as

shown figure 7. In SubBytes transformation is cipher

undergo process of nonlinear byte substitution table (S-box)

that operates on each of the State bytes independently.

ShiftRows transformation is cipher that processes the State

by cyclically right shifting of last three rows in State.

MixColumns is transformation where cipher takes a

columns of State and mixes their data independently gives

one another to produce new columns using GF (2
8
)

polynomial. AddRoundKey is transformation cipher and

Inverse Cipher is XOR operation with Round Key added to

State.

A FSM controller is used for synchronization purpose where

clock and reset are input of system. A block 128 bit

plaintext input is XOR with partial key repeated for 10 times

uses SubByte, ShiftRows, MixColumns, and AddRoundKey

which generate encoded text. The main purpose of saving

computation period of key expansion operation unnecessary

repeated for same cipher key which enhance throughput of

system by maintain standard frequency.

3.4 AES Decryption

It is inverted operation of encryption is implemented using

reverse order Inverse Cipher in AES algorithm. AES

decryption contain following subsequent steps are:

InvShiftRows, InvSubBytes, InvMixColumns and

AddRoundKey as shown figure 7. InvShiftRows is

transformation is inverse of ShiftRows processes the State

by cyclically left shifting of last three rows in State.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 483

Fig. 8: Block diagram of AES Decryption

InvSubBytes is the inverse of byte substitution

transformation. An inverse S-box obtained by applying the

inverse affine transformation followed by taking

multiplicative inverse in GF(2
8
) polynomial.

InvMixColumns is the inverse of MixColumns

transformation operates on column-wise operation four term

polynomial and multiplied modulo (X
4
+1) with a fixed

polynomial. InvAddRoundKey Transformation is own

inverse AddRoundKey which involves 128 bitwise XOR

operation. InvKeyExpansion module is 128 bit cipher

generate 10 number of 128 bit size Partial key for each

round of operation similar as KeyExpansion. But major

difference is sequence of generated partial key is inverted.

3.5 AES Attack with Analysis

Fault injection attacks based on exploit computational errors

to find cryptographic keys. Attacker requires use of a “fault

model” to device require detailed knowledge of design of

system and a mean to reliably induce faults without

permanently damaging a unit. In AES-base smart card to

induce setup time violations is presented which allowed

predictable fault injection analysis to retrieve a full AES-

128 key [6].

Glitch attack cause due to glitch which define as undesired

transition is occurs before a signal settles to its intended

value. A glitch is create a transient fault that difficult to

troubleshoot in hardwired crypto core. A clock glitches &

power supply glitches are helpful corruption data. Using

proper cascade structure of flip flop within synchronized

system glitch attack reduce dynamical reduced.

4. RESULTS AND COMPARISONS

The experimental results use the Xilinx Spartan 6 FPGA

target device XC6SLX16-3-CSG324. A Xilinx ISE 14.7

tools used for synthesis & implementation of logic also

XPower Analyzer for power estimation. A Xilinx Isim

P.2013 and ModelSim SE 6.3c for testing & verification of

simulation result. A proposed designs of AES encryptor and

decryptor has area utilization as summarized in tables 1 &

table 2 respectively. A table 3 describe Sbox design

compared with previous Sbox designs. Our proposed design

having very low dynamic power consumption with less

number of 4 LUT’s count. It’s seen from table 4 that

proposed design also achieves much higher throughput than

previous AES encryption designs is summarized in detail.

Table 1 Proposed work AES Encryption design utilization

Parameter Encrypt core

Slice Registers 554 3 %

Slice LUTs 3531 38 %

LUT FF 407 11 %

Block RAM 8 25 %

Maximum Frequency 277.369 MHz -

Table 2 Proposed work AES Decryption design utilization

Parameter Decrypt core

Slice Registers 607 3 %

Slice LUTs 3529 38 %

Logic gate 426 11 %

Block RAM 20 62 %

Maximum Frequency 223.157 MHz -

Table 3 Comparisons of Sbox Architecture

Parameter Proposed

Design

[4] [5]

Device XC6SLX16 XC2VP30 XC2VP30

of Slice 69 40 37

of 4 LUTs 7 71 66

Max. Delay

(ns)

15.45 15.00 15.6

Total Dynamic

Power (W)

0.020 7.271 9.74

Table 4 Comparisons of proposed Encryptor with existing

design

Paramete

r

Propose

d Design

[1] [2] [3]

Platforms Xilinx

Sparton-

6

XC6SLX

16

Xilinx

Virtex-5

XC5VL5

0

Xilinx

Virtex-2

XC2VP2

0

Altera

APEX2

0K-C

Data path

(bit)

128 32 128 128

Area 554

slices/

3531

LUT

769

slices/

2350

LUT

9028

slices

40960

slices/

895

LUT

Frequency

(MHz)

277.369 100.8 220.7 -

Throughp

ut (Mbps)

200 73.3 28250 1188

5. CONCLUSIONS

This paper gives a design of AES algorithm using pipeline

structure and parallel processing. The proposed design has

ability to defend against glitch attacks without very extra

larger area compare to conventional design. It shows

improvement in area and power consumption compared to

conventional architecture. Whereas using pipeline structure

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 484

for repeated computation it become lower down speed as

well as data rate. But its capable follows as per standard of

AES.

REFERENCES

[1] Z. Yuan, Y. Wang, J. Li, R. Li and W. Zhao, “FPGA

based optimization for masked AES

implementation”, Proc. IEEE 54th International

Midwest Symposium on Circuits and Systems

(MWSCAS), pp.1-4 2011.

[2] Issam Hammad, Kamal El-Sankary, Ezz El-Masry,

"High-Speed AES Encryptor with Efficient Merging

Techniques" Proc. IEEE Embedded Systems Letters,

vol. 2, no. 3, Sept 2010.

[3] Hoang Trang, Nguyen Van Loi, “An efficient FPGA

implementation of the Advanced Encryption

Standard algorithm”, Proc. Computing and

Communication Technologies RIVF International

Conference, pp. 1-4 2012.

[4] Saurabh Kumar, V.K. Sharma, K. K. Mahapatra,

“Low Latency VLSI Architecture of S-box for AES

Encryption”, Proc. International Conference on

Circuits, Power and Computing Technologies, pp.

694-698 2013.

[5] Saurabh Kumar, V.K. Sharma, K. K. Mahapatra, “An

Improved VLSI Architecture of S-box for AES

Encryption”, International Conference on

Communication Systems & Network Technologies,

pp. 2013.

[6] FIPS 197, Advanced Encryption Standard

http://csrc.nist.gov/publications/fips/ fips197/fips-

197.pdf

