
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 381

FPGA-BASED INTERFACING FOR 8-BIT AND 32-BIT ELECTRONIC

DEVICES

Prateek Khurana
1
, Rajat Arora

2
, Monika Nagaria

3
, Megha Sharma

4
, Rajendra Bahadur Singh

5

1
School of Information and Communication Technology, Gautam Buddha University, Greater Noida, Uttar Pradesh –

201308, India
2
School of Information and Communication Technology, Gautam Buddha University, Greater Noida, Uttar Pradesh –

201308, India
3
School of Information and Communication Technology, Gautam Buddha University, Greater Noida, Uttar Pradesh –

201308, India
4
School of Information and Communication Technology, Gautam Buddha University, Greater Noida, Uttar Pradesh –

201308, India
5
School of Information and Communication Technology, Gautam Buddha University, Greater Noida, Uttar Pradesh –

201308, India

Abstract
Most of the earlier electronic devices used buses with lesser number of bits but with the advancement in technology, devices having

buses with larger number of bits are available in the market. Thus, there is an urging need to interface both these old and new

technologies. In this paper, an interfacing unit has been proposed to interface the devices using buses with lower number of bits and

higher number of bits.

In the present work, two types of circuits are used for interfacing these devices; those have been termed as UPSIZER and

DOWNSIZER circuit. Upsizer concatenates the bits generated by a lower bit device and sends it to a higher bit device. On the other

hand, Downsizer divides the bits generated by higher bit devices and send it to lower bit devices.

Keywords—FPGA; Verilog; Xilinx; Interfacing Unit; Microprocessors; VLSI

---***---

1. INTRODUCTION

A microprocessor is one of the central part of a modern

personal computer or, in fact, any advance computer device.

The microprocessor has undergone a tremendous amount of

development more than any other component of the modern

computer. It has experienced some great moments in the history

since 1960s due to its significant importance in modern

computing. Intel was a forerunner in early microprocessor

technology, releasing its first 8-bit microprocessor, the 8008, in

1972. However, Intel’s 8080 microprocessor was the major

attraction of computer developers and engineers in the middle

of that decade [1]. The development of 32-bit microprocessor

began in late 1970s and they appeared on the mass market in

the 1980s [2, 3]. 64-bit chips have been available since 1992

and are now in the mainstream of computer use [4, 5].

However, the advancement of technology with this pace

requires a mechanism to support communication of new

technology with that of the obsolete one. Thus there is a need of

an interfacing unit which can form a link, so that technologies

belonging to different generations can communicate easily.

In this paper, an electronic circuit has been proposed which acts

as an interfacing unit between an 8-bit device and a 32-bit

device. Since this interfacing circuit increases size of bits from

input to output, it was termed as “Upsizer” circuit.

Similarly, another interfacing unit has been proposed in which a

32-bit device interacts with an 8-bit device. This interfacing

unit downsizes the bit size from input to output and hence a

term “Downsizer” can be coined for this circuit.

A thorough description of the architecture of proposed circuit is

given in section II. Upsizer leads to the concatenation of

bits/bytes of same id/group/address and then transfers in the

forward direction. So Upsizer contains input buses of lower

number of bits and output buses of higher number of bits.

Upsizer can be used to concatenate the bits generated by a

lower bit device and sends it to higher bit device. Downsizer

divides the bits generated by higher bit devices and sends it to

lower bit devices. So a downsizer contains input buses of higher

number of bits and output buses of lower number of bits. The

complete working of these circuits is explained in section III.

ModelSim PE student edition10.3 software has been used for

writing the Verilog code for the Upsizer circuit. The waveforms

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 382

obtained on ModelSim have been shown in section IV. Xilinx

ISE tool has been used for the extensive synthesis of the

Verilog code which models this circuit. The results of this

synthesis are compiled in section V. The Verilog code was also

dumped on Xilinx Spartan®-3 FPGA kit which is explained in

section VI. This demonstrates the working of the circuit

proposed in this paper. The block diagram of the Upsizer and

Downsizer circuit are shown in Fig. 1 and Fig. 2 respectively.

Fig. 1.Block Diagram of Upsizer as an Interfacing Unit

Fig 2 Block Diagram of Downsizer as an Interfacing Unit

2. ARCHITECTURAL DESCRIPTION

To interface the devices using buses containing lower number

of bits and devices using buses containing higher number of

bits an Upsizer circuit was proposed. In this circuit,

concatenation of bits/bytes of same id/group/address was done

and transferred forward. So this circuit contained input buses of

lower number of bits and output buses of higher number of bits.

When an Upsizer circuit was employed, the device having a

lower fan-out acted as a master and drove the Upsizer circuit

that further lead to concatenation of bits and it transferred

higher number of bits to slave having a higher fan-in. Input

signals like VALID, DATA [7:0], ID [3:0] etc. were given by

the master to the Upsizer circuits. Output signals like

VALIDM, IDM [3:0], DATAM [31:0] etc. were used to drive

the slave by the Upsizer. The I/O pins of the Upsizer circuit are

shown in Fig. 3.

Fig 3 I/O pins of the Upsizer circuit.

In the above figure, except READYM signal, all other signals

were given as input to the Upsizer by the master which in this

case was a microprocessor or any other device having lower

number bits. This input data was concatenated according to

same id/group/address and transferred to the slave. VALID

input pin indicated the validity of input data, if it was high the

input data was considered valid. For its low value, the input was

considered invalid/unacceptable. This signal was generated by

the master. If it was required to perform the concatenation of

data, then data was to be accepted by the Upsizer, which was

only possible if VALID signal was high. The input data of 8

bits was sent by the master device along DATA [7:0] bus. It

was this data that was concatenated and transferred forward to

the slave device. ID [3:0] was used to differentiate the input 8

bit data. It acted like an address of the incoming data. It helped

in concatenating the input data because data of same id were

concatenated in 32 bits and transferred to slave. Master sent the

ID along with the 8-bit data. READYM signal was used in

communicating between slave and Upsizer. This signal was

generated by the slave. Whenever slave was not ready to accept

the data or was busy, this signal went low and it indicated the

Upsizer to stop transferring the data and wait for some clock

cycles. Data was not transferred to slave in that case even

though if it was concatenated and stored by the Upsizer.

Upsizer waited for the READYM signal to go high and then

resumed the data transfer to slave.

In the Fig. 3, except READY signal, all other signals were

given by the Upsizer as output to the slave which in this case

was a microprocessor or a device having higher no of bits. The

slave device received concatenated data according to same

id/group/address and was transferred by the Upsizer as

generated by the master. VALIDM signal was generated by the

Upsizer only when the input 8-bit data having same id were

concatenated and ready to transfer. This signal indicated the

slave that input data was valid and allowed acceptance of data

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 383

by the slave. The output data of 32 bits was sent by the Upsizer

to the slave device along OUTPUT [31:0] bus. 8-bit data from

master of same id were concatenated in Upsizer and transferred

to slave through this 32 bit bus. IDM [3:0] gave the id of the

data which was getting transferred to the slave. BYTESM [4:0]

signal was generated by the Upsizer. It was a 4-bit wide data.

Each bit corresponded to the 8-bit wide in the 32-bit output

data. READY signal was another output signal generated by the

Upsizer. When this signal went low it indicated to master that

the Upsizer was busy/not ready to accept the data. Meanwhile

Upsizer generated some wait cycles and completed the

execution of the previous transfers.

Downsizer circuit was same as that of the Upsizer. The input

and the output signals of the Downsizer model had the same

functions as that of the Upsizer model. The only difference was

that Downsizer divided the bits generated by higher bit devices

and sent it to lower bit devices. Therefore a Downsizer was

used to convert large number of bits into small number of bits,

so that the data used by higher bit devices may be used by the

devices with lower bits. A Downsizer had input buses of higher

number of bits and output buses of lower number of bits. When

a Downsizer circuit was employed, the device having higher

fan-out acted as a master and drove the downsizer circuit. This

lead to division of bits and Downsizer transferred lower number

of bits to slave having lower fan-in.

Input signals like VALID, DATA [31:0], ID [3:0] etc. were

given by the master to the Downsizer circuit. Output signals

like VALIDM, IDM [3:0], DATAM [7:0] etc. were used to

drive the slave device by the Downsizer circuit. The I/O pins of

the Downsizer circuit are shown in Fig. 4.

Fig 4 I/O pins of the Downsizer circuit.

3. WORKING OF THE INTERFACING CIRCUITS

Upsizer handled the routing of data only and did not modify the

transfer type or response information. Input data of same id

were grouped together, so maximum 4 bytes data of same id

were concatenated if they arrived consecutively. If there was

any change in id after 1/2/3 bytes of data, then rest of the upper

bytes were zero padded and a total 4 bytes were forwarded.

Thus ID [3:0] played a major role in determining the address of

the incoming data and created groups of 32-bit data

accordingly, which were then transferred to the slave device.

The other input signals, including the 8-bit input data bus

DATA [7:0] were generated by the master device for the

Upsizer circuit.

If input data, generated by the master device for the first four

clocks is 11001100,00001111,11110000,10101010 and ID

remained same as 1001, then all these four bytes of data were

concatenated by the Upsizer circuit. The 32-bit output data

transferred to the slave device in 5
th

 clock cycle in this case was

10101010111100000000111111001100. This example has been

shown in Fig. 5.

Fig 5 Working of Upsize circuit without zero padding condition

Now for another instance, if input data, generated by the master

device for the first two clocks is10101010, 11110000 and ID is

1001, and for the next clock cycle ID got changed to 1010.

Then zero padding would be done and the two input data would

be sent by the Upsizer to the slave device as 32-bit output data:

00000000000000001111000010101010. This example has been

shown in Fig. 6.

Fig.6 Working of Upsizer circuit with zero padding condition

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 384

The Downsizer worked in the similar fashion as Upsizer circuit.

The Downsizer divided the 32-bit data into four different bytes

of data and transferred it to the slave device. For the Downsizer

circuit, the master device had a higher fan-out i.e. 32-bit data.

The slave device had a lower fan-in i.e. 8-bit data. In this no

zero padding was required, because whatever the 32-bit data

was coming it got divided into 4 bytes and these 4 bytes were

transferred to the slave device.

For instance, if the input 32-bit data generated by the master

device was 11001100000011111111000010101010, then this

input data got divided into 4 bytes as 10101010, 11110000,

00001111, 11001100 with lower byte in the starting and higher

byte in the last of the data transfer. This example has been

shown in Fig. 7.

Fig 7 Working of Downsizer circuit

4. MODELSIM ALTERA SIMULATION

The Upsizer circuit whose logical description is given in the

above section has been realized with a hardware description

language (HDL) i.e. Verilog. Verilog language was invented by

a company called Gateway Design Automation in the early

1980s. Most of the modern electronic systems can be modeled

using this language at register transfer level of abstraction [6, 7

and 8]. The simulation software that has been used to simulate

the Verilog code of the circuit is MODELSIM PE 10.3. This

tool is basically a simulation and verification tool for Verilog,

VHDL, System C and mixed level designs. This simulator is

best suited for both ASIC and FPGA designs as it has an

excellent platform support that makes it easy to adopt in

majority of design and project flows. It provides high capacity,

performance and debugging capabilities that are essential to

simulate large blocks of code. The graphical user interface

(GUI) provided is also intelligently engineered that makes the

graphical interpretation of the design flexible and easily

understandable [9].

To design a circuit with this software, a certain step by step

process is followed otherwise it becomes quite a tedious task.

Firstly, a working design library needs to be created, and then

all the design files required for the simulation are compiled.

The next step is to load all the design files and then multiple

simulations are performed. The I/O waveforms are studied on

the waveform viewer, which is an essential part of this

software. The waveforms are also useful in studying and

debugging the results. The basic simulation flow of any HDL

code on this software is shown in Fig 8.

Fig 8 Basic Simulation Flow

A Verilog code was written for the Upsizer circuit according to

the basic simulation flow shown in Fig. 8. This Verilog code

was successfully compiled with no errors. A test bench was

written for this Verilog code that helped to force all possible

inputs at regular time intervals. Both the Verilog code for the

Upsizer circuit and its test bench were simulated and I/O

waveforms were studied in the waveform viewer. These

waveforms when extensively studied, verified the working of

the Upsizer circuit according to the logic discussed in the

previous section.

Consider for instance, if the input data was 00001111 and ID

was 0001 for four clock cycles, then the expected output data is

00001111000011110000111100001111. In this case, the input

data from the master device was concatenated since ID did not

change its value for four clock cycles. Thus Upsizer performed

its functions as it was desired. The simulation result for this

case has been shown in Fig. 9.

In another example, the input data was 10101010 for four clock

cycles and ID remained as 0000. As it was expected, the

Upsizer circuit concatenated the input data from the master four

times and the 32-bit output data sent to the slave device was

10101010101010101010101010101010. This has been shown

in Fig. 10.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 385

Fig 9 Simulation result with input data =00001111 and id =

0001 for four clocks and output =

00001111000011110000111100001111

Fig 10 Simulation result with input data =10101010 and id =

0000 for four clocks and output =

10101010101010101010101010101010

Now for the case when ID was 0001 for the first clock cycle,

and it was changed for the next clock cycle with input data

remaining constant as 10101010, zero padding was done. This

verifies the logic of Upsizer circuit. Since ID changed its value

just after the first clock cycle, the higher 24 bits of 32-bit data

were zero padded. The 32-bit output data obtained in this case

was 00000000000000000000000010101010. This simulation

result has been shown in Fig. 11.

Fig 11 Simulation result with input data = 10101010 and id =

0001 for first clock and id got changed,so the output =

00000000000000000000000010101010.

In another case, input 8-bit data was 10101010 and ID was

0010 for first clock cycle. For the second clock cycle, the input

data was 11110000 and ID was still 0010. The ID got changed

after second clock cycle. Considering the function of Upsizer

circuit, the higher 16 bits of the 32-bit output data were zero

padded. However, lower 16 bits consisted of the concatenated

input data. The simulation results has been shown in Fig. 12.

Fig 12 Simulation result with input data = 10101010 and id

=0010 for first clock and input data = 11110000 and id = 0010

for second clock, then id got changed, therefore output =

00000000000000001111000010101010

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 386

Fig 13 A Verilog Testbench for the Upsizer Circuit Model

In all of the above cases, the input had to be forced manually to

achieve the output waveforms. Therefore it was not possible to

simulate all possible input combinations. In Verilog, it is

possible to create a Testbench for a module. Testbench is just

like a dummy template which basically declares inputs to the

circuit as registers and outputs from circuit as wires, then

instantiates the circuit for all these specified inputs. This

testbench can be used to automatically force all the input

combinations. Testbench techniques and virtual tester

development are heavily utilized in the presentation of circuit

simulations. To show the simulation of the Upsizer circuit for

all input combinations, a Testbench was written in Verilog and

was simulated on the ModelSim software. All the possible input

data combinations as well as IDs were considered. The output

waveforms so produced were studied. All possible output

waveforms were achieved. The simulation of the Testbench has

been shown in Fig. 13.

5. XILINX SYNTHESIS

Synthesis is the most important step in implementing a Verilog

design in the real world environment. Simulation only relies on

language features that are not synthesizable, but in this step, the

Verilog design is brought near to the actual hardware. It

basically transforms high level Verilog/ VHDL modules, which

don’t have any real physical hardware, which can be wired up

to perform the desired logic, into low level logical constructs.

These construct are modeled in the form of look up tables or

ASIC and FPGA hardware components. Xilinx ISE (Integrated

Software Tool) is the tool that has been used to perform the

synthesis of the Upsizer circuit. Xilinx is the inventor of this

tool. This tool mainly focuses on the synthesis and analysis of

HDL designs, giving an exact idea about the utilization of

various components of the hardware used in the design [10]. It

has the capability to perform timing analysis, examine the

register transfer level (RTL) diagrams, check syntax errors,

simulate the design for different set of input conditions and thus

configure the target device.

The Verilog code for the Upsizer circuit was also written in

Xilinx ISE tool. The test bench of this Verilog code was also

formed. The SPARTAN 3E version of the field programmable

gate array (FPGA) family was selected for synthesis of this

Verilog code. It was found that the Verilog code was

successfully synthesized with no errors or warnings. The device

utilization summary showing the logic utilization was generated

as shown in the Fig. 14.

Fig 14 Design Summary generated by the Xilinx ISE tool

As seen from the Fig. 14, the numbers of slice flip flops used

were 41 out of the total available 3541. The number of 4 input

LUTs (look up tables) used were 47 out of 3584 total LUTs

available. The logic distribution in the detailed map report

showed that the number of slices containing only related logic

were fully utilized i.e. 53 out of 53. Related logic is defined as

logic that shares connectivity - e.g. two LUTs are "related" if

they share common inputs. When assembling slices, Map gives

priority to combine logic that is related.

Doing so results in the best timing performance. The numbers

of slices containing unrelated logic were 0 out of 53. Unrelated

logic shares no connectivity. Map will only begin

packingunrelated logic into a slice once 99% of the slices are

occupied throughrelated logic packing.The percentage

utilization of the number of IOBs used was 46% i.e. 90 out of

the total 195 available IOBs were used.

The timing detail of the synthesis report is shown in Fig. 15.

The synthesis report gives the actual value of delay which

includes both gate delay and net delay of particular LUTs and

the total delay. The total memory usage for the synthesis was

189080 kilobytes. The total REAL time to Xst (Xilinx

Synthesis Technology) completion was 6.00 seconds and the

total CPU time to Xst completion was 6.97 seconds.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 387

Fig 15 Timing Details of the Synthesis Report

The RTL synthesis of the Verilog code was also carried out.

The schematic diagram of RTL synthesis was generated, that is

shown in Fig. 16. The input and output pins and the wires

declared in the Verilog Model were clearly shown in the

schematic diagram.

Fig 16 Schematic Diagram of RTL Synthesis

The final report of the HDL synthesis was generated which

showed the design statistics and cell usage. The cell usage

depicted that the number of flip flops used were 41 and there

were 89 IO buffers. Out of these IO buffers, 15 were input

buffers and 74 were output buffers. The cell usage showed that

number of BELS utilized were 88 and only 1 clock buffer was

used. This detailed final report has been shown in Fig. 17.

Fig.17 Final Report of the HDL synthesis

6. FPGA IMPLEMENTATION

After the synthesis of the Verilog code on Xilinx ISE tool, the

next step was FPGA (Field Programmable Gate Array)

implementation. A large number of circuits have been

implemented on FPGA for verifying the Verilog/VHDL design

proposed for these circuits. [11, 12 and 13]. The code

synthesized on Xilinx ISE tool was verified using a SPARTAN

3E FPGA kit manufactured by Texas Instruments. The FPGA

kit which was used has been shown in Fig. 18. The Verilog

code for the interfacing circuit was dumped on this FPGA kit.

Fig 18 SPARTAN-3E FPGA kit used for Implementation

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 388

This input switches and output LEDs were linked with the input

and output variables of the code respectively to verify the

Verilog Design. Thus the programming file that was generated

was dumped on the FPGA kit successfully to verify the

working of Interfacing Circuit. For the working of the Upsizer

Circuit the 8-bit input data was given using the input switches

on the FPGA board. The output LEDs verified the result that

explained the working of Interfacing Circuit.

7. CONCLUSIONS

In this paper, a Verilog code for the interfacing circuit that has

been proposed, was written and simulated on ModelSim. The

results obtained from ModelSim simulation waveforms were

verified. A comprehensive synthesis of the Verilog model was

performed on the Xilinx ISE tool to get an idea of the

requirement of the resources on the FPGA kit. Finally the

Verilog code was dumped on the SPARTAN-3 FPGA kit which

further proved the proper functioning of the interfacing circuit.

The output has been checked and verified under various test

cases and hence this UPSIZER circuit can act as an interfacing

unit between an 8 bit and a 32 bit interface. The proposed

interfacing circuit may be used in burst transfers in which bulk

of data are transferred from master to slave having different bit

processors.

ACKNOWLEDGMENTS

The authors wish to thank Mr. Sharad and Mr. Rajendra

Bahadur Singh for their immense support and help whenever

required and for providing access to laboratory for testing

purposes.

REFERENCES

[1] P.J. Horne, “Implementation Of An Intel 8080

Microprocessor Developments System Using Existing

Minicomputers,” IEEE transactions on nuclear science,

Vol.NS-24, No.3, June 1977

[2] R. Sherbume, M. Katevenis, D. Patterson, and C.

Sequin, “A 32-bit microprocessor with a large register

file,” IEEE J. Solid-State Circuits, Vol. SC-19, no. 5,

Oct. 1984.

[3] Joan M. Pendleton, Shing I. Kong, Emil W. Brown,

Frank Dunlap, Christopher Marino, David M. Ungar,

David A. Patterson, and David A. Hodges, “ Design A

32-bit Microprocessor for Smalltalk,” IEEE Journal Of

Solid-State Circuits,Vol. SC-21, No. 5, October 1986.

[4] Hunt, Doug. "Advanced performance features of the 64-

bit PA-8000." InCompcon'95.'Technologies for the

Information Superhighway', Digest of Papers. pp. 123-

128. IEEE, 1995.

[5] Niveditha Domse, Kris Kumar, and K. N.

Balasubramanya Murthy, “64 bit Computer

Architectures for Space Applications – A study,”World

Academy of Science, Engineering and Technoloy,Vol:3

2009-03-28

[6] Girish Kumar B, Prabhu V, Siva Prasad T, Ruban

Thomas “ Design and Implementation of FPGA Based

Efficient Data Transmission Using Verilog,”

International Journal of Emerging Technology and

Advanced Engineering, Volume 3, Issue 11,ISSN 2250-

2459, November 2013

[7] Ulrich Golze, Peter Blinzer, Elma rCochlovius, Michael

Schafers,Klaus-Peter Wachsmann, “VLSI Chip Design

with the Hardware Description Language VERILOG:

An Introduction Based on a Large RISC Processor

Design,”VLSI Chip Design with the Hardware

Description Language VERILOG: An Introduction

Based on a Large RISC Processor Design 1st, Springer-

Verlag New York, Inc. Secaucus, NJ, USA 1996, ISBN

3540600329.

[8] Zaher S. Andraus, Karem A. Sakallah, “VLSI Automatic

abstraction and verification of verilog models,”DAC

'04 Proceedings of the 41st annual Design Automation

Conference, Pages 218-223, 2004-06-07,ISBN: 1-

58113-828-8

[9] P.V.Sasanka, Y.V.RamanaRao, A.L.Siridhara, “A

Verilog Model of Universal Scalable Binary Sequence

Detector,” International Journal of Scientific and

Research Publications, Volume 3, Issue 4, ISSN 2250-

3153, April 2011.

[10] Kaushik Chandra Deva Sarma, Amlan Deep Borah,

Lalan Kumar Mishra, “Design and Synthesis of 32 BIT

ALU Using Xilinx ISE V9.1i,” International Journal of

Engineering Research & Technology (IJERT), Vol. 2

Issue 5, ISSN: 2278-0181, May – 2013.

[11] Mangesh V. Benodkar and Prasad K. Bhasme, “A

Review Paper on Design and Simulation of Universal

Asynchronous Receiver Transmitter on Field

Programmable Gate Array Using VHDL,”International

Journal of Advance Research in Computer Science and

Management Studies, Volume 2, Issue 1, January 2014.

[12] Amit kumar Singh, S.K. Dubey,M.G. Bhatia,“ Design

and Simulation of FPGA based Digital System for Peak

Detection and Counting, “International Journal of

Advanced Research in Computer Science and Software

Engineering, Volume 3, Issue 11,ISSN: 2277 128X

November 2013

[13] Li Shang, Alireza S. Kaviani, Kusuma Bathala,

“Dynamic power consumption in Virtex™-II FPGA

family,” FPGA '02 Proceedings of the 2002

ACM/SIGDA tenth international symposium on Field-

programmable gate arrays, Pages 157-164, 2002-02-24.

[14] Ciletti, Michael D. Advanced digital design with the

Verilog HDL. Vol. 2. Prentice Hall, 2003.

[15] Palnitkar, Samir. Verilog HDL: a guide to digital design

and synthesis. Vol. 1. Prentice Hall Professional, 2003.

