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Abstract 
In this paper, designing of CORDIC Processor in Verilog to determine the sine and cosine of a given argument, and extending this 

code to determine the Cartesian co-ordinates of a complex number represented in Euler’s form. The inputs given are the Cartesian 

vector and the input angle in 17- bit signed number representation. The outputs obtained are sine and cosine of the input angle. To 

determine the Cartesian co-ordinates of the complex number, the magnitude of the complex number is given as input along with the 

input angle. The language used for the designing of CORDIC Processor is Verilog. The software used for the simulation is Xilinx ISE 

Simulator. 
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1. INTRODUCTION 

CORDIC stands for COordinate Rotation DIgital Computer. 

The key concept of CORDIC arithmetic is based on the simple 

and ancient principles of two-dimensional geometry. But the 

iterative formulation of a computational algorithm for its 

implementation was first described in 1959 by Jack E. Volder 

[1], [2] for the computation of trigonometric functions, 

multiplication and division. Not only a wide variety of 

applications of CORDIC have been suggested over the time, 

but also a lot of progress has taken place in the area of 

algorithm design and development of architectures for high 

performance and low-cost hardware solutions [3]–[12]. Not 

only a wide variety of applications of CORDIC have emerged 

in the last 50 years, but also a lot of progress has been made in 

the area of algorithm design and development of architectures 

for high-performance and low-cost hardware solutions of 

those applications. CORDIC-based computing received 

increased attention in 1971, when John Walther [3], [4] 

showed that, by varying a few simple parameters, it could be 

used as a single algorithm for unified implementation of a 

wide range of elementary transcendental functions involving 

logarithms, exponentials, and square roots along with those 

suggested by Volder [1]. During the same time, Cochran [5] 

benchmarked various algorithms, and showed that CORDIC 

technique is a better choice for scientific calculator 

applications. The popularity of CORDIC was very much 

enhanced thereafter primarily due to its potential for efficient 

and low-cost implementation of a large class of applications 

which include: the generation of trigonometric, logarithmic 

and transcendental elementary functions; complex number 

multiplication, eigenvalue computation, matrix inversion, 

solution of linear systems and singular value decomposition 

(SVD) for signal processing, image processing, and general 

scientific computation. Some other popular and upcoming 

applications are 

i. Direct frequency synthesis, digital modulation and 

coding for speech/music synthesis and 

communication; 

ii. Direct and inverse kinematics computation for robot 

manipulation; and 

iii. Planar and 3-dimensional vector rotation for 

graphics and animation. 

 

Although CORDIC may not be the fastest technique to 

perform these operations, it is attractive due to the simplicity 

of its hardware implementation, since the same iterative 

algorithm could be used for all these applications using the 

basic shift-add operations of the form a ± b.2
−i

. Key points 

regarding CORDIC may elaborated as 

i. Introduced in 1959 by Jack Volder 

ii. Performs vector rotations of arbitrary angles using 

only shifts and add. 

iii. An iterative algorithm 

iv. Computation involves addition, subtraction, 

compares, and shifts 

v. Calculates a wide variety of functions like sine, 

cosine, arc tangent, square root 

vi. Idea is to rotate a vector in Cartesian Plane by some 

angle 

vii. Mostly used when no hardware multiplier is 

available 

viii. Calculations are performed through a number of 

micro-rotations 

 

CORDIC architectures have been successfully employed for 

waveform generation [7], [8], implementation of digital filters 
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[9], transform computation [10], [11], matrix calculations [12] 

etc. In spite of its simplicity and low computational 

complexity, CORDIC algorithm suffers from major 

bottlenecks like either high latency or large overheads of 

scale-factor compensation, when an optimized set of micro-

rotations are used to reduce the latency. Parallel CORDIC 

architectures have been suggested in [13] and [14] to reduce 

the latency but at the cost of additional hardware and time to 

implement the scale-factor compensation. The redundant 

iterations are eliminated by greedy search in [15]–[17], but the 

hardware savings achieved by this approach are counter 

balanced by variable scale-factor compensation circuits. 

Various scale-factor compensating techniques have been 

suggested in the literature [18]–[20], but these techniques 

either lead to large area overheads or otherwise affect 

throughput or latency. The Taylor series expansion offers a 

low complexity solution for the design of scale-free CORDIC. 

Scaling-Free CORDIC [21]–[23] indemnify the scale-factor 

limitations to certain extent. Various optimization efforts in 

the above CORDIC algorithms are targeted for circular 

CORDIC, while hyperbolic CORDIC still needs to be 

explored for improvements. The number of efficient CORDIC 

designs for hyperbolic trajectory is far less as compared to 

circular trajectory regardless, inspite of its wide scope in 

artificial neural networks [24]–[26], adaptive filtering [27] and 

for computing logarithm and exponential function [28]. In 

[29], the authors improve the range of convergence of 

conventional CORDIC algorithm in hyperbolic trajectory by 

using additional iterations which allow negative iteration 

indices as well. Though it increases the RoC of the hyperbolic 

CORDIC algorithm, it significantly adds to the latency of the 

processor. 

 

The main contributions of this paper are: (i) Applications and 

principle and mode operations of CORDIC (ii) 

implementation of LUTs, Xilinx ISE, Verilog Hardware, (iii) 

designing of CORDIC processor (iv) simulation and results, 

and (v) conclusion. 

 

2. CORDIC’s, APPLICATIONS, ARCHITECTURE 

MODE OF OPERATIONS 

2.1 CORDIC’s, Applications 

2.1.1 Hardware 

CORDIC is generally faster than other approaches when a 

hardware multiplier is unavailable (e.g., in a microcontroller 

based system), or when the number of gates required to 

implement the functions it supports should be minimized (e.g., 

in an FPGA).On the other hand, when a hardware multiplier is 

available (e.g., in a DSP microprocessor) as shown in Fig. 1. 

 

2.1.2 Software 

Many older systems with integer only CPUs have 

implemented CORDIC to varying extents as part of their IEEE 

Floating Point libraries. As most modern general purpose 

CPUs have floating point registers with common operations 

such as add, subtract, multiply, divide, sin, cos, square root, 

log10, natural log, the need to implement CORDIC in them 

with software is nearly non-existent. Only microcontroller or 

special safety and time constraint software applications would 

need to consider using CORDIC. 

 

 
 

Fig.-1: CORDIC Architecture 

 

2.2 CORDIC’s, Applications 

The CORDIC core can be realized in one of three methods: 

i. ITERATE:  This option builds a single ROTATOR.  

The user provides the arguments and gives the core 

ITERATIONS clock cycles to get the result. A signal 

named init is instantiated to load the input values. It 

uses the least amount of LUTs. 

ii. PIPELINE: This option can take a new input on 

every clock and gives results ITERATIONS clock 

cycles later. It uses the most amount of  LUTs. 

iii. COMBINATORIAL:  This option gives result in a 

single clock cycle at the expense of very deep logic 

levels. 

 

The combinatorial implementation runs at about 10 MHz 

while the iterative ones run at about 125 in Lattice ECP2 

device. 

 

2.3 Mode of Operations 

A Survey of CORDIC Algorithms for FPGAs‖ [7] CORDIC 

can be used in one of the two modes of operation. (i) Rotation 

and vector mode as shown in Fig. 2 (a-b) respectively. The 

basic idea of CORDIC lies 
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Rotate (1,0) by φ degrees to get (x,y) : x=cos(φ), y=sin(φ) 

 

 

 

 

 

 

 

Rotation Mode      Vector mode 

[Start at (1, 0) Rotate by θ       [Start at (1, y) Rotate until y = 0 

(cosθ, sinθ)]                           The rotation is tan−1y] 

 

(a)                                  (b) 

 

Fig.-2: Rotation of a vector by an angle θ 

 

 
 

Rearrange as 

 

 
 

 

Can compute rotation φ in steps where each step is of size 

 

 
 

The ith iteration results in 

 

 
 

Zi is introduced to keep track of the angle that has been 

rotated (z0 = φ) 

 

 
 

2.3 Architecture of LUTs, Xilinx ISE, Verilog 

Hardware 

2.3.1 LUTs 

An overview of how LUTs are built helps describe the key 

innovations in the ALM. A LUT is typically built out of 

SRAM bits to hold the configuration memory (CRAM) LUT 

mask and a set of multiplexers to select the bit of CRAM that 

is to drive the output. To implement a k-input LUT (k-LUT) a 

LUT that can implement any function of k inputs—2k SRAM 

bits and a 2k:1 multiplexer are needed. Fig. 3 shows a 4 LUT, 

which consists of 16 bits of SRAM and a 16:1 multiplexer 

implemented as a tree of 2:1 multiplexers. The 4 LUT can 

implement any function of 4 inputs (A, B, C, D) by setting the 

appropriate value in the LUT-mask. To simplify the 4-LUT, it 

can also be built from two 3-LUTs connected by a 2:1 

multiplexer. 

 

 
 

Fig.-3: Building a LUT 

 

2.3.2 Verilog 

Verilog HDL is most commonly used in the design, 

verification, and implementation of digital logic chips at the 

register transfer level (RTL) of abstraction. There are two 

assignment operators: a blocking assignment (=) and a non- 

blocking (<=) assignment. Verilog modules that conform to a 

synthesizable coding-style, known as RTL, can be physically 

realized by synthesis software. Synthesis-software 

algorithmically transforms the Verilog source into a netlist, a 

logically-equivalent description consisting only of elementary 

logic primitives (AND, OR, NOT, flip-flops, etc.) that are 

available in a specific FPGA or VLSI technology. The 

function of non- blocking (<=) assignment operator in Verilog 

is that its action doesn't register until the next clock cycle. This 

means that the order of the assignments is irrelevant and will 

produce the same result. The other assignment operator is 

referred to as a blocking (=) assignment. When "=" 

assignment is used, for the purposes of logic, the target 

variable is updated immediately. There are two separate ways 

of declaring a Verilog process. These are the always and the 

initial keywords. The always keyword indicates a free-running 

process. The initial keyword indicates a process executes 

exactly once. Both constructs begin execution at simulator 

time 0, and both execute until the end of the block. Once an 

always block has reached its end, it is rescheduled (again). 
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2.3.3 Xilinx ISE 

Xilinx ISE is a software tool produced by Xilinx for synthesis 

and analysis of HDL designs, which enables the developer to 

synthesize ("compile") their designs, perform timing analysis, 

examine RTL diagrams, simulate a design's reaction to 

different stimuli, and configure the target device with the 

programmer. 

-Select File, then New Project. 

-Select a project location and name. 

-Select the device family, device, package, and speed 

grade. 

-Click New Source. 

-Select Verilog Module and enter the file name. 

-Specify the inputs and outputs for the decoder. These 

will be inserted into an automatically generated template 

for the Verilog file. 

 

In case, there are no existing sources, click Next. If there are 

any, click Add-Source. 

 

Project Navigator now shows a summary of the project 

 

Click on the ―filename.v‖ tab below the summary window in 

the top left―Sources‖ pane. 

 

Before the design can be synthesized, we need to specify what 

pins on the FPGA the inputs and outputs are connected to. 

Compile the design (Check Syntax) to check for errors. Make 

a Test Bench Waveform using New Source. Associate the Test 

Bench Waveform with the Project filename. Perform 

Behavioral Simulation using Xilinx ISE Simulator. View the 

RTL Schematic and the Synthesis Report. Fig. 4 outlined the 

Flow of building a Xilinx. 

 

3. DESIGNING OF CORDIC PROCESSOR 

3.1 Design Specifications 

The code is designed for first quadrant 

i. Mode of operation chosen is rotation mode 

ii. Input Cartesian vector(x, y) is (0.603,0) 

iii. Rotation mode is realized through combinatorial 

mode. 

iv. Number of iteration are 16 which is equal to 

2^iteration bits. 

 
 

Fig.-4: Building a Xilinx Design Flow 

 

The various design specifications are as follows: The core can 

operate in either radian or degree mode. The core uses 16+sign 

(17 bit) numbers for x,y, and theta, and iterates 16 times in the 

algorithm. There are two arctan function tables, one for radian 

and one for degree mode. The core will operate in 

ROTATION mode in which X and Y Cartesian vector and an 

angle are given. The CORDIC rotator reduces the angle to 

zero by rotating the vector. To compute the cos and sin of the 

angle, set the inputs as follows: 

 

y_i = 0 

x_i = 0.603 =17’d19896 

theta_i = the input angle 

 

On completion: 

y_o = sin theta_i x_o = cos theta_i 

 

The CORDIC can work with the angle expressed in radians or 

degrees as demonstrated in Table 1. 

 

RADIAN_16 uses 16 bit values (+ sign bit for 17 bit 

accuracy). Angle information is in the format U (1, 15) where 

bit 16 is the sign bit, bit 15 is the whole number part and bits 

[14:0] are the fractional parts. 

 

DEGREE_8_8 uses U(8,8) + a sign bit where bit 16 = the sign 

bit, [15:8] = the whole number part and [7:0] = the fractional. 

 

The X and Y values are computed using a `XY_BITS + sign 

bit accuracy. The format is assumed to be U(1,15) + sign bit 

 

Going to a higher number of bits would allow more iteration, 

thus, improving accuracy. Iteration Accuracy is the number of 

times the algorithm will iterate. Number of iterations <= the 

number of bits used in the angles The code is further used to 
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determine the Cartesian co-ordinates of a complex number 

represented in Euler’s form. 

 

Euler’s form : re
iθ

 

 

where r = magnitude of the complex number & θ = angle 

 

The Cartesian coordinates, thus, obtained are given as 

 

x_cor = r*cos θ 

 

y_cor = r*sin θ 

 

Table -1: Representation of angles in 17-bit signed decimal numbers 

 

 

 

4. SIMULATION AND SYNTHESIS 

Corresponding to the specifications and methodology 

discussed above following are the simulation and synthesis 

results obtained associated with the various input/output 

4.1 Testbench Waveform 

The testbench waveform for the required simulation is shown 

in Fig. 5. 

 

Angle (degrees) 0 1 2 3 4 5 6 7 

Angle(radians,17'd) 0 571 1143 1715 2287 2859 3431 4003 

Angle(degrees) 8 9 10 11 12 13 14 15 

Angle(radians, 17'd) 4575 5147 5719 6291 6862 7434 8006 8578 

Angle(degrees) 16 17 18 19 20 21 22 23 

Angle(radians, 17'd) 9150 9722 10294 10866 11438 12010 12582 13153 

Angle(degrees) 24 25 26 27 28 29 30 31 

Angle(radians, 17'd) 13725 14297 14869 15441 16013 16585 17157 17729 

Angle(degrees) 32 33 34 35 36 37 38 39 

Angle(radians, 17'd) 18301 18873 19444 20016 20588 21160 21732 22304 

Angle(degrees) 40 41 42 43 44 45 46 47 

Angle(radians, 17'd) 22876 23448 24020 24592 25164 25735 26307 26879 

Angle(degrees) 48 49 50 51 52 53 54 55 

Angle(radians, 17'd) 27451 28023 28595 29167 29739 30311 30883 31455 

Angle(degrees) 56 57 58 59 60 61 62 63 

Angle(radians, 17'd) 32026 32598 33170 33742 34314 34886 35458 36030 

Angle(degrees) 64 65 66 67 68 69 70 71 

Angle(radians, 17'd) 36602 37174 37746 38317 38889 39461 40033 40605 

Angle(degrees) 72 73 74 75 76 77 78 79 

Angle(radians, 17'd) 41177 41749 42321 42893 43465 44037 44608 45180 

Angle(degrees) 80 81 82 83 84 85 86 87 

Angle(radians, 17'd) 45752 46324 46896 47468 48040 48612 49184 49756 

Angle(degrees) 88 89 90      

Angle(radians, 17'd) 50328 50899 51471      
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Fig.-5: Testbench waveform 

 

Fig. 5-11 represents the simulation results. The inputs are: 

 

theta_i: 17’d34314 → 600 

 

17’d25735 → 450 

 

x_i: 17’d19896 →0.603 

 

y_i: 0 

 

r: 10 , 5 

 

4.2 Testbench Waveform 

 

 
 

Fig.-6: Simulation (Output corresponding to θ = 45°) 

 

Simulation results:  Theoretical results: 

x_i = 0.603, y_i = 0   x_i = 0.603, 

y_i = 0 theta_i = 45°, r = 5  theta_i = 45°, r = 5 

x_o = 17’d23168 = 0.7070  x_o = 17’d23170 = 0.7071 

y_o = 17’d23167 = 0.7070  y_o = 17’d23170 = 0.7071 

theta_o = 1   theta_o = 0 

x_cor = 3, y_cor = 3  x_cor = 3.54, y_cor = 3.54 

 

 
 

Fig.-7: Simulation (Output corresponding to θ = 60°) 

 

Simulation results:  Theoretical results: 

x_i = 0.603, y_i = 0  x_i = 0.603, y_i = 0 

theta_i = 60°, r = 5  theta_i = 60°, r = 5 

x_o = 17’d15379 = 0.4963  x_o = 17’d16384 = 0.5000 

y_o = 17’d28378 = 0.8660  y_o = 17’d28377 = 0.8659 

theta_o = -1   theta_o = 0 

x_cor = 2, y_cor = 4  x_cor = 2.50, y_cor = 4.33 

 

 
 

Fig.-8: Simulation (Output showing transition between θ = 

45° and θ = 60°) 

 

4.3 RTL Synthesis 

 
 

Fig.-9: Diagram showing inputs and ouputs 
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Fig.-10: Architecture of CORDIC & module CORDIC 

 

4.3.1 RTL Synthesis Report 

 
 

Fig.-11: Synthesis Report 

 

5. CONCLUSIONS 

This paper presents the designing of CORDIC processor in 

VERILOG using XILINX ISE simulator. The output of the 

code, designed for the CORDIC processor in Rotation mode, 

was obtained using different values of the magnitude(r) of the 

vector and the input angle (theta_i). The outputs were found to 

be in complete agreement with the theoretical results. The 

RTL Schematic and the Synthesis Report confirmed that there 

were no errors in the designing of the code. Hence, the code is 

found to be correct for any positive value of r and 

00≤theta_i≤900. XILINX ISE simulator is useful tool for 

designing of various efficient CORDIC processors with 

different configurations and can further extend with latest 

advance technology. 
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