
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 342

DESIGNING OF CORDIC PROCESSOR IN VERILOG USING XILINX ISE

SIMULATOR

Swati Sharma
1
, Mohit Bansal

2

1
Department of Electrical & Electronics Engineering, J.P. Institute of Engineering & Technology, Meerut, UP, India

2
Department of Electrical & Electronics Engineering, Ideal institute of Technology, Ghaziabad, UP, India

Abstract
In this paper, designing of CORDIC Processor in Verilog to determine the sine and cosine of a given argument, and extending this

code to determine the Cartesian co-ordinates of a complex number represented in Euler’s form. The inputs given are the Cartesian

vector and the input angle in 17- bit signed number representation. The outputs obtained are sine and cosine of the input angle. To

determine the Cartesian co-ordinates of the complex number, the magnitude of the complex number is given as input along with the

input angle. The language used for the designing of CORDIC Processor is Verilog. The software used for the simulation is Xilinx ISE

Simulator.

Keywords: CORDIC Processor, Verilog, Cartesian co-ordinates, and Cartesian co-ordinates, Simulator etc.

---***---

1. INTRODUCTION

CORDIC stands for COordinate Rotation DIgital Computer.

The key concept of CORDIC arithmetic is based on the simple

and ancient principles of two-dimensional geometry. But the

iterative formulation of a computational algorithm for its

implementation was first described in 1959 by Jack E. Volder

[1], [2] for the computation of trigonometric functions,

multiplication and division. Not only a wide variety of

applications of CORDIC have been suggested over the time,

but also a lot of progress has taken place in the area of

algorithm design and development of architectures for high

performance and low-cost hardware solutions [3]–[12]. Not

only a wide variety of applications of CORDIC have emerged

in the last 50 years, but also a lot of progress has been made in

the area of algorithm design and development of architectures

for high-performance and low-cost hardware solutions of

those applications. CORDIC-based computing received

increased attention in 1971, when John Walther [3], [4]

showed that, by varying a few simple parameters, it could be

used as a single algorithm for unified implementation of a

wide range of elementary transcendental functions involving

logarithms, exponentials, and square roots along with those

suggested by Volder [1]. During the same time, Cochran [5]

benchmarked various algorithms, and showed that CORDIC

technique is a better choice for scientific calculator

applications. The popularity of CORDIC was very much

enhanced thereafter primarily due to its potential for efficient

and low-cost implementation of a large class of applications

which include: the generation of trigonometric, logarithmic

and transcendental elementary functions; complex number

multiplication, eigenvalue computation, matrix inversion,

solution of linear systems and singular value decomposition

(SVD) for signal processing, image processing, and general

scientific computation. Some other popular and upcoming

applications are

i. Direct frequency synthesis, digital modulation and

coding for speech/music synthesis and

communication;

ii. Direct and inverse kinematics computation for robot

manipulation; and

iii. Planar and 3-dimensional vector rotation for

graphics and animation.

Although CORDIC may not be the fastest technique to

perform these operations, it is attractive due to the simplicity

of its hardware implementation, since the same iterative

algorithm could be used for all these applications using the

basic shift-add operations of the form a ± b.2
−i

. Key points

regarding CORDIC may elaborated as

i. Introduced in 1959 by Jack Volder

ii. Performs vector rotations of arbitrary angles using

only shifts and add.

iii. An iterative algorithm

iv. Computation involves addition, subtraction,

compares, and shifts

v. Calculates a wide variety of functions like sine,

cosine, arc tangent, square root

vi. Idea is to rotate a vector in Cartesian Plane by some

angle

vii. Mostly used when no hardware multiplier is

available

viii. Calculations are performed through a number of

micro-rotations

CORDIC architectures have been successfully employed for

waveform generation [7], [8], implementation of digital filters

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 343

[9], transform computation [10], [11], matrix calculations [12]

etc. In spite of its simplicity and low computational

complexity, CORDIC algorithm suffers from major

bottlenecks like either high latency or large overheads of

scale-factor compensation, when an optimized set of micro-

rotations are used to reduce the latency. Parallel CORDIC

architectures have been suggested in [13] and [14] to reduce

the latency but at the cost of additional hardware and time to

implement the scale-factor compensation. The redundant

iterations are eliminated by greedy search in [15]–[17], but the

hardware savings achieved by this approach are counter

balanced by variable scale-factor compensation circuits.

Various scale-factor compensating techniques have been

suggested in the literature [18]–[20], but these techniques

either lead to large area overheads or otherwise affect

throughput or latency. The Taylor series expansion offers a

low complexity solution for the design of scale-free CORDIC.

Scaling-Free CORDIC [21]–[23] indemnify the scale-factor

limitations to certain extent. Various optimization efforts in

the above CORDIC algorithms are targeted for circular

CORDIC, while hyperbolic CORDIC still needs to be

explored for improvements. The number of efficient CORDIC

designs for hyperbolic trajectory is far less as compared to

circular trajectory regardless, inspite of its wide scope in

artificial neural networks [24]–[26], adaptive filtering [27] and

for computing logarithm and exponential function [28]. In

[29], the authors improve the range of convergence of

conventional CORDIC algorithm in hyperbolic trajectory by

using additional iterations which allow negative iteration

indices as well. Though it increases the RoC of the hyperbolic

CORDIC algorithm, it significantly adds to the latency of the

processor.

The main contributions of this paper are: (i) Applications and

principle and mode operations of CORDIC (ii)

implementation of LUTs, Xilinx ISE, Verilog Hardware, (iii)

designing of CORDIC processor (iv) simulation and results,

and (v) conclusion.

2. CORDIC’s, APPLICATIONS, ARCHITECTURE

MODE OF OPERATIONS

2.1 CORDIC’s, Applications

2.1.1 Hardware

CORDIC is generally faster than other approaches when a

hardware multiplier is unavailable (e.g., in a microcontroller

based system), or when the number of gates required to

implement the functions it supports should be minimized (e.g.,

in an FPGA).On the other hand, when a hardware multiplier is

available (e.g., in a DSP microprocessor) as shown in Fig. 1.

2.1.2 Software

Many older systems with integer only CPUs have

implemented CORDIC to varying extents as part of their IEEE

Floating Point libraries. As most modern general purpose

CPUs have floating point registers with common operations

such as add, subtract, multiply, divide, sin, cos, square root,

log10, natural log, the need to implement CORDIC in them

with software is nearly non-existent. Only microcontroller or

special safety and time constraint software applications would

need to consider using CORDIC.

Fig.-1: CORDIC Architecture

2.2 CORDIC’s, Applications

The CORDIC core can be realized in one of three methods:

i. ITERATE: This option builds a single ROTATOR.

The user provides the arguments and gives the core

ITERATIONS clock cycles to get the result. A signal

named init is instantiated to load the input values. It

uses the least amount of LUTs.

ii. PIPELINE: This option can take a new input on

every clock and gives results ITERATIONS clock

cycles later. It uses the most amount of LUTs.

iii. COMBINATORIAL: This option gives result in a

single clock cycle at the expense of very deep logic

levels.

The combinatorial implementation runs at about 10 MHz

while the iterative ones run at about 125 in Lattice ECP2

device.

2.3 Mode of Operations

A Survey of CORDIC Algorithms for FPGAs‖ [7] CORDIC

can be used in one of the two modes of operation. (i) Rotation

and vector mode as shown in Fig. 2 (a-b) respectively. The

basic idea of CORDIC lies

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 344

Rotate (1,0) by φ degrees to get (x,y) : x=cos(φ), y=sin(φ)

Rotation Mode Vector mode

[Start at (1, 0) Rotate by θ [Start at (1, y) Rotate until y = 0

(cosθ, sinθ)] The rotation is tan−1y]

(a) (b)

Fig.-2: Rotation of a vector by an angle θ

Rearrange as

Can compute rotation φ in steps where each step is of size

The ith iteration results in

Zi is introduced to keep track of the angle that has been

rotated (z0 = φ)

2.3 Architecture of LUTs, Xilinx ISE, Verilog

Hardware

2.3.1 LUTs

An overview of how LUTs are built helps describe the key

innovations in the ALM. A LUT is typically built out of

SRAM bits to hold the configuration memory (CRAM) LUT

mask and a set of multiplexers to select the bit of CRAM that

is to drive the output. To implement a k-input LUT (k-LUT) a

LUT that can implement any function of k inputs—2k SRAM

bits and a 2k:1 multiplexer are needed. Fig. 3 shows a 4 LUT,

which consists of 16 bits of SRAM and a 16:1 multiplexer

implemented as a tree of 2:1 multiplexers. The 4 LUT can

implement any function of 4 inputs (A, B, C, D) by setting the

appropriate value in the LUT-mask. To simplify the 4-LUT, it

can also be built from two 3-LUTs connected by a 2:1

multiplexer.

Fig.-3: Building a LUT

2.3.2 Verilog

Verilog HDL is most commonly used in the design,

verification, and implementation of digital logic chips at the

register transfer level (RTL) of abstraction. There are two

assignment operators: a blocking assignment (=) and a non-

blocking (<=) assignment. Verilog modules that conform to a

synthesizable coding-style, known as RTL, can be physically

realized by synthesis software. Synthesis-software

algorithmically transforms the Verilog source into a netlist, a

logically-equivalent description consisting only of elementary

logic primitives (AND, OR, NOT, flip-flops, etc.) that are

available in a specific FPGA or VLSI technology. The

function of non- blocking (<=) assignment operator in Verilog

is that its action doesn't register until the next clock cycle. This

means that the order of the assignments is irrelevant and will

produce the same result. The other assignment operator is

referred to as a blocking (=) assignment. When "="

assignment is used, for the purposes of logic, the target

variable is updated immediately. There are two separate ways

of declaring a Verilog process. These are the always and the

initial keywords. The always keyword indicates a free-running

process. The initial keyword indicates a process executes

exactly once. Both constructs begin execution at simulator

time 0, and both execute until the end of the block. Once an

always block has reached its end, it is rescheduled (again).

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 345

2.3.3 Xilinx ISE

Xilinx ISE is a software tool produced by Xilinx for synthesis

and analysis of HDL designs, which enables the developer to

synthesize ("compile") their designs, perform timing analysis,

examine RTL diagrams, simulate a design's reaction to

different stimuli, and configure the target device with the

programmer.

-Select File, then New Project.

-Select a project location and name.

-Select the device family, device, package, and speed

grade.

-Click New Source.

-Select Verilog Module and enter the file name.

-Specify the inputs and outputs for the decoder. These

will be inserted into an automatically generated template

for the Verilog file.

In case, there are no existing sources, click Next. If there are

any, click Add-Source.

Project Navigator now shows a summary of the project

Click on the ―filename.v‖ tab below the summary window in

the top left―Sources‖ pane.

Before the design can be synthesized, we need to specify what

pins on the FPGA the inputs and outputs are connected to.

Compile the design (Check Syntax) to check for errors. Make

a Test Bench Waveform using New Source. Associate the Test

Bench Waveform with the Project filename. Perform

Behavioral Simulation using Xilinx ISE Simulator. View the

RTL Schematic and the Synthesis Report. Fig. 4 outlined the

Flow of building a Xilinx.

3. DESIGNING OF CORDIC PROCESSOR

3.1 Design Specifications

The code is designed for first quadrant

i. Mode of operation chosen is rotation mode

ii. Input Cartesian vector(x, y) is (0.603,0)

iii. Rotation mode is realized through combinatorial

mode.

iv. Number of iteration are 16 which is equal to

2^iteration bits.

Fig.-4: Building a Xilinx Design Flow

The various design specifications are as follows: The core can

operate in either radian or degree mode. The core uses 16+sign

(17 bit) numbers for x,y, and theta, and iterates 16 times in the

algorithm. There are two arctan function tables, one for radian

and one for degree mode. The core will operate in

ROTATION mode in which X and Y Cartesian vector and an

angle are given. The CORDIC rotator reduces the angle to

zero by rotating the vector. To compute the cos and sin of the

angle, set the inputs as follows:

y_i = 0

x_i = 0.603 =17’d19896

theta_i = the input angle

On completion:

y_o = sin theta_i x_o = cos theta_i

The CORDIC can work with the angle expressed in radians or

degrees as demonstrated in Table 1.

RADIAN_16 uses 16 bit values (+ sign bit for 17 bit

accuracy). Angle information is in the format U (1, 15) where

bit 16 is the sign bit, bit 15 is the whole number part and bits

[14:0] are the fractional parts.

DEGREE_8_8 uses U(8,8) + a sign bit where bit 16 = the sign

bit, [15:8] = the whole number part and [7:0] = the fractional.

The X and Y values are computed using a `XY_BITS + sign

bit accuracy. The format is assumed to be U(1,15) + sign bit

Going to a higher number of bits would allow more iteration,

thus, improving accuracy. Iteration Accuracy is the number of

times the algorithm will iterate. Number of iterations <= the

number of bits used in the angles The code is further used to

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 346

determine the Cartesian co-ordinates of a complex number

represented in Euler’s form.

Euler’s form : re
iθ

where r = magnitude of the complex number & θ = angle

The Cartesian coordinates, thus, obtained are given as

x_cor = r*cos θ

y_cor = r*sin θ

Table -1: Representation of angles in 17-bit signed decimal numbers

4. SIMULATION AND SYNTHESIS

Corresponding to the specifications and methodology

discussed above following are the simulation and synthesis

results obtained associated with the various input/output

4.1 Testbench Waveform

The testbench waveform for the required simulation is shown

in Fig. 5.

Angle (degrees) 0 1 2 3 4 5 6 7

Angle(radians,17'd) 0 571 1143 1715 2287 2859 3431 4003

Angle(degrees) 8 9 10 11 12 13 14 15

Angle(radians, 17'd) 4575 5147 5719 6291 6862 7434 8006 8578

Angle(degrees) 16 17 18 19 20 21 22 23

Angle(radians, 17'd) 9150 9722 10294 10866 11438 12010 12582 13153

Angle(degrees) 24 25 26 27 28 29 30 31

Angle(radians, 17'd) 13725 14297 14869 15441 16013 16585 17157 17729

Angle(degrees) 32 33 34 35 36 37 38 39

Angle(radians, 17'd) 18301 18873 19444 20016 20588 21160 21732 22304

Angle(degrees) 40 41 42 43 44 45 46 47

Angle(radians, 17'd) 22876 23448 24020 24592 25164 25735 26307 26879

Angle(degrees) 48 49 50 51 52 53 54 55

Angle(radians, 17'd) 27451 28023 28595 29167 29739 30311 30883 31455

Angle(degrees) 56 57 58 59 60 61 62 63

Angle(radians, 17'd) 32026 32598 33170 33742 34314 34886 35458 36030

Angle(degrees) 64 65 66 67 68 69 70 71

Angle(radians, 17'd) 36602 37174 37746 38317 38889 39461 40033 40605

Angle(degrees) 72 73 74 75 76 77 78 79

Angle(radians, 17'd) 41177 41749 42321 42893 43465 44037 44608 45180

Angle(degrees) 80 81 82 83 84 85 86 87

Angle(radians, 17'd) 45752 46324 46896 47468 48040 48612 49184 49756

Angle(degrees) 88 89 90

Angle(radians, 17'd) 50328 50899 51471

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 347

Fig.-5: Testbench waveform

Fig. 5-11 represents the simulation results. The inputs are:

theta_i: 17’d34314 → 600

17’d25735 → 450

x_i: 17’d19896 →0.603

y_i: 0

r: 10 , 5

4.2 Testbench Waveform

Fig.-6: Simulation (Output corresponding to θ = 45°)

Simulation results: Theoretical results:

x_i = 0.603, y_i = 0 x_i = 0.603,

y_i = 0 theta_i = 45°, r = 5 theta_i = 45°, r = 5

x_o = 17’d23168 = 0.7070 x_o = 17’d23170 = 0.7071

y_o = 17’d23167 = 0.7070 y_o = 17’d23170 = 0.7071

theta_o = 1 theta_o = 0

x_cor = 3, y_cor = 3 x_cor = 3.54, y_cor = 3.54

Fig.-7: Simulation (Output corresponding to θ = 60°)

Simulation results: Theoretical results:

x_i = 0.603, y_i = 0 x_i = 0.603, y_i = 0

theta_i = 60°, r = 5 theta_i = 60°, r = 5

x_o = 17’d15379 = 0.4963 x_o = 17’d16384 = 0.5000

y_o = 17’d28378 = 0.8660 y_o = 17’d28377 = 0.8659

theta_o = -1 theta_o = 0

x_cor = 2, y_cor = 4 x_cor = 2.50, y_cor = 4.33

Fig.-8: Simulation (Output showing transition between θ =

45° and θ = 60°)

4.3 RTL Synthesis

Fig.-9: Diagram showing inputs and ouputs

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 348

Fig.-10: Architecture of CORDIC & module CORDIC

4.3.1 RTL Synthesis Report

Fig.-11: Synthesis Report

5. CONCLUSIONS

This paper presents the designing of CORDIC processor in

VERILOG using XILINX ISE simulator. The output of the

code, designed for the CORDIC processor in Rotation mode,

was obtained using different values of the magnitude(r) of the

vector and the input angle (theta_i). The outputs were found to

be in complete agreement with the theoretical results. The

RTL Schematic and the Synthesis Report confirmed that there

were no errors in the designing of the code. Hence, the code is

found to be correct for any positive value of r and

00≤theta_i≤900. XILINX ISE simulator is useful tool for

designing of various efficient CORDIC processors with

different configurations and can further extend with latest

advance technology.

REFERENCES

[1] CORDIC, http://en.wikipedia.org/wiki/CORDIC,

accessed on March 2014.

[2] J. E. Volder, "The Birth of CORDIC", J. VLSI Signal

Processing, Vol. 25, No. 101 , 2000, also available on

http://dx.doi.org/10.1023/A:1008110704586, accessed

on March 2014.

[3] Schmid Hermann, ―Decimal computation‖, New York,

Wiley, 1974

[4] Andraka Ray, ―A survey of CORDIC algorithms for

FPGA based computers‖ also available on

http://www.andraka.com/files/crdcsrvy.pdf, accessed

on March 2014.

[5] Verilog, http://en.wikipedia.org/wiki/Verilog, accessed

on March 2014.

[6] Ayan Banerjee and Anindya Sundar Dhar ―FPGA

realization of a CORDIC based FFT processor for

biomedical signal processing‖, Journal of

Microprocessors and Microsystems, Vol. 25, No.3, pp.

131–142, 2001.

[7] D.G. Steer and S.R. Penstone, ―Digital Hardware for

Sine-Cosine Function‖, IEEE Transactions on

Computers, Vol. C-26, No. 12, pp.1283-1286, 1977.

[8] G.L. Haviland and A.A. Tuszynski, ―A CORDIC

Arithmetic Processor Chip‖, IEEE Journal of Solid-

State Circuits, Vol.15, No.1,pp.4-15,1980.

[9] T.W. Curtis, P. Allison and J.A. Howard, ―A Cordic

Processor for Laser Trimming‖, IEEE Transaction on

Micro, Vol.6, No.3, pp. 61.71,1986.

[10] Y.H. Hu and S. Naganathan, ―A novel implementation

of a chirp Z-transform using a CORDIC processor‖,

IEEE Transactions on Acoustics, Speech and Signal

Processing, Vol.38, No.2, pp.352-354, 1990.

[11] M.B. Yeary, R.J. Fink, H. Sundaresan and D.W.

Guidry, ―IEEE Transactions on Instrumentation and

Measurement‖, Vol. 51, No.4, pp.804-809, 2002.

[12] S. Aggarwal, P.K. Meher and K. Khare, ―Scale-Free

Hyperbolic CORDIC Processor and Its Application to

Waveform Generation‖, IEEE Transactions on Circuits

and Systems I: Regular Papers, Vol.60, No.2, pp. 314-

326, 2013.

[13] A. Troya, K. Maharatna, M. Krstic, E. Grass, U.

Jagdhold and R. Kraemer, ―Low-Power VLSI

Implementation of the Inner Receiver for OFDM-

Based WLAN Systems‖, IEEE Transactions on

Circuits and Systems I: Regular Papers, Vol.55, No.2,

pp.672-686, 2008.

[14] S. Aggarwal, P.K. Meher and K. Khare, ―Area-Time

Efficient Scaling-Free CORDIC Using Generalized

Micro-Rotation Selection‖, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 20, No.8,

pp.1542 – 1546, 2012.

[15] T. Y. Sung and H.C Hsin, ―Design and simulation of

reusable IP CORDIC core for special-purpose

processors‖, IET Computers & Digital Techniques,

Vol.1, No.5, pp. 581 – 589, 2007.

[16] T. Y. Sung, ―Memory-efficient and high-speed split-

radix FFT/IFFT processor based on pipelined CORDIC

rotations‖, IEE Proceedings Vision, Image and Signal

Processing, Vol.153, No.4, pp. 405 – 410, 2006.

[17] J. Granado, A. Torralba, J. Chavez and V. Baena-

Lecuyer, ―Design of an efficient CORDIC-based

architecture for synchronization in OFDM‖, IEEE

Transactions on Consumer Electronics, Vol.52, No. 3,

pp. 774 – 782, 2006.

http://www.sciencedirect.com/science/article/pii/S0141933101001065
http://www.sciencedirect.com/science/journal/01419331
http://www.sciencedirect.com/science/journal/01419331/25/3

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 349

[18] K. Maharatna, A. Troya, S. Banerjee and E. Grass,

―Virtually scaling-free adaptive CORDIC rotator‖, IEE

Proceedings Computers and Digital Techniques, Vol.

151, No. 6, pp. 448 – 456, 2004

[19] M.B. Yeary, R.J. Fink, H. Sundaresan and D.W.

Guidry, ―Design of a CORDIC processor for mixed-

signal A/D conversion‖, IEEE Transactions on

Instrumentation and Measurement, Vol.51, No.4, pp.

804 – 809, 2002.

[20] Durga Prasad, ―SIMD based baseband processor for

CORDIC algorithms‖, ProQuest, UMI Dissertations,

The University of Texas at Dallas, 2010.

[21] Terence Keith, ―Adaptive CORDIC: Using parallel

angle recoding to accelerate CORDIC rotations‖,

ProQuest, UMI Dissertation, The University of Texas

at Austin, 2007.

[22] P. K. Meher, J. Valls, T-B Juang, K. Sridharan, and K.

Maharatna, ―50 Years of CORDIC: Algorithms,

Architectures and Applications‖, IEEE Transactions on

Circuits & Systems-I: Regular Papers, Vol.56, No.9,

pp.1893- 1907, 2009.

[23] P. K. Meher and S.Y. Park, ―CORDIC Designs for

Fixed Angle of Rotation‖, IEEE Transactions on VLSI

Systems, Vol.21, No.2, pp.217-228, 2013.

[24] B. Lakshmi and A. S. Dhar, ―CORDIC Architectures:

A Survey‖, Journal: VLSI Design, 2010.

[25] Jack E. Volder, ―The CORDIC Trigonometric

Computing Technique‖, IRE Transactions on

Electronic Computers, pp.330-334, 1959.

BIOGRAPHIES

Swati Sharma received B.E. degree in

Instrumentation Engineering from Sant

Longowal Institute of Engineering and

Technology Longowal Punjab in 2009. He is

currently pursuing Masters of Technology in

VLSI from Mewar University Mewar, India.

Her areas of interest are VLSI and Digital Electronics.

M. Bansal is currently working as an

Assitant Professor in Ideal Institute of

Technology Ghaziabad, UP. He has

completed his doctoral research work in

the area of renewable energy systems from

Alternate Hydro Energy Center, Indian

Institute of Technology Roorkee in 2014. Earlier, He did his

masters in Energy and Environmental Management from

Center for Energy Studies, Indian Institute of Technology

Delhi. He completed his graduation in Electrical Engineering

from Aligarh Muslim University, Aligarh. His research

interests include Renewable Energy Systems, Rural

Electricafication, Emebeded System and VLSI.

