
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 270

A DISTINCT APPROACH FOR X/MOTIF APPLICATION GUI TEST

AUTOMATION

K.V. Maruthi Prasad
1

1
ISRO Satellite centre, HAL Airport road, Bangalore-17, India

Abstract
This paper titled “A distinct approach for X/Motif application GUI test automation” presents the research results of the innovative

approach applied on X/Motif applications under test automation. It is the excerpts of the results obtained on X/Motif GUI software

test automation without record & playback technique. This approach is based on virtualisation of mouse button and key board key

events using “XSendEvent” Xlib routine. It also presents the details about the software that has been developed for X/Motif GUI

application testing automated through a tester input file of identified keywords with the necessary input as test cases. The paper

identifies the limitations and future plans for the expansion of the work.

Keywords: X/Motif, test automation, XSendEvent, record & playback, GUI.

--***--

1. INTRODUCTION

ISRO (Indian Space Research Organisation) is the premier

government institute involved in space research and

development activities. ISRO has been known for it’s

accomplishments in nation building through science &

technological innovations in space field. GEOSCHEMACS

(Geostationary Earth Orbit SpaCecraft HEalth Monitoring

Analysis and Control Software) is the in-house developed end

to end software solution and primary set of ground software

elements used for Indian geo mission health monitoring,

control and analysis. GEOSCHEMACS is a software package

based on client / server architecture with the development

environment primarily consisting of C/C++, X/Motif, Oracle

on UNIX / LINUX Operating System flavours. The total size

of GEOSCHEMACS is around one million lines of source

code.

The role of ground software elements has been crucial and

critical in meeting the ever expanding space services for users.

It is necessary to evolve reliable software for ground elements

used for spacecraft health monitoring, analysis and control so

that there is no disturbance in supporting space services.

Testing sufficient enough is the only way to make any

software reliable and worthy of using. GUI based spacecraft

health monitoring analysis & presentation software consist the

major part under GEOSCHEMACS. X/Motif is the

predominant GUI development environment. This set of

X/Motif GUI software is highly interactive in nature and also

require enhancements / modifications as per spacecraft

specific or general requirements. The test cases, test

combinations are more in number and it is difficult to test

repetitively for regression testing. Hence, X/Motif GUI

applications test automation is required.

Test automation can enable some testing tasks to be performed

more efficiently than by testing manually. Automation of

testing makes the effort involved in performing regression

tests at minimal. GUI based applications test automation

allows the tester to run more tests in less time and also to

execute them more often. Automation of GUI based

application testing enables us to execute test cases of input

entry with greater accuracy, run difficult or impossible test

cases to do manually. GUI applications test automation gives

increased confidence on the software under test. Test

automation ensures the consistency & repeatability of tests

and reuse of tests. Test automation reduces costs and increases

the quality of the testing tasks.

1.1 What is X/Motif?

Motif refers to both a Graphical User Interface (GUI)

specification and the widget toolkit for building applications

that follow specification under the X window system on UNIX

and other POSIX compliant systems. It is a toolkit or widget

set layered on Xlib and Xt. Xt (X Toolkit or Xtoolkit

Intrinsics) provides necessary functionality for implementation

of graphical user interfaces. Xt provides an object oriented

framework for creating reusable, configurable user interface

components called widgets. Motif provides widgets for such

common user interface elements as labels, push buttons,

menus, dialog boxes, scroll bars and test-entry or display

areas. The X window system (or simply X) is a hardware and

operating system independent windowing system developed

by MIT. The system is based on client server architecture. It is

a distributed, network transparent, device independent

windowing and graphics system. X divides the screen into

multiple input and output areas called windows. X takes user

input from a pointer (mostly mouse) and also handles

keyboard input. X was designed as a network protocol – a

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 271

predefined set of requests and replies – between two

processes. One of those processes is an application program

called a client, and the other, the server (X server) which

controls the display hardware, keyboard and pointer.

Motif GUI uses X as the window system and Xt as the

platform for the application programming interface. The stable

X version 11 (X11) system provides subroutine library, Xlib.

Xlib provides functions for connecting to a particular display

server, creating windows, drawing graphics, responding to

events and so on. X was designed to provide windows on

bitmapped terminals. Xlib is the C language interface to X

protocol. X event is packet of information that is generated by

the X server when certain actions occur (such as moving the

pointer or pressing a key).

Table 1 User Interface Model for Motif

Motif (Xm library)

Xt Intrinsics (Xt library)

Xlib (X window system library)

Operating System

1.2 What is GUI Test Automation?

GUI testing to mean that a GUI-based software application is

tested solely by performing sequences of events on GUI

widgets; and the correctness of the software is determined by

examining only the state of the GUI widgets. GUI test

automation is difficult. It is technology-dependent. It is

usually acknowledged that an automatic process is faster than

a manual process. The GUI reacts to various user events like

mouse clicks and keystrokes. This allows the user the front

end to communicate with the underlying application. GUI in

turn communicates with the user via method calls or some

kind of messaging system. GUI functional test means

validating GUI objects, checking functional flows by

operating GUI objects and verifying output data which are

generated in back end and then displayed in front page. People

have ventured to perform these operations following different

models and techniques which can range from fully manual to

semi automatic. However the tendency is to automate as much

as possible so as to make it very fast and have a huge coverage

which would otherwise take a tremendous time for a human.

GUIs typically have a large number of potential inputs and

input sequences. To reasonably verify the system’s

functionality requires a large amount of testing. Performing

these tests manually is costly and can be practically

impossible. Therefore, it is necessary to perform automated

testing. Automation testing is a process of writing a computer

program, to do testing that would otherwise need to be done

manually. The test scripts once written or developed for the

application or the software under test can be run repeatedly as

per the requirement. Also, it is a quick and efficient process

without the manual intervention. As such the test coverage of

the application, the maintenance of the scripts, unattended

modes of the user were observed to be beneficial in the

automation testing process.

Too many repeatable tests are challenge to man. It doesn’t

matter for machine to do so. That’s one reason that automation

of GUI testing is required. Another reason is for regression

test purpose. The idea of software test automation is to let

computer simulate what human do when manually running a

test on the target application. A challenge of GUI test

automation is how to recognize the GUI objects and the

actions of them by machine

1.3 Capture and Replay Technique

The most prominent technique that is available in most of the

GUI testing automation tools is capture and replay or record

and play back. The tester interacts with the system GUI to run

the system, thus generating sessions of sequence of mouse

clicks, UI and keyboard events; The tool captures and stores

the user events and the GUI screen shots; a script is produced

per each user session. The tester can automatically replay the

execution by running the script. This process is extremely

labour intensive and largely relies in the ability of the test

designer. It is huge and expensive to manage and quite a lot of

work to generate the entire test cases. A captured test is a

linear script and it is far from good solution for a number of

reasons, including: The test script only stores inputs that have

been recorded, not test cases. So it does not know what the

expected results are until you program it. Small change

introduced in the AUT (Application Under Test) can break

most of the scripts. The captured script can only cope with

precisely the same conditions as when it was captured.

1.4 Keyword Driven Approach

To provide the capacity of testing the GUI automatically for

all the possible or required test case combinations without

recording, another method called “key-word driven approach”

is suitable. This approach has several advantages such as: 1.

low maintenance since the test cases are concise, clear, easily

readable, easy to modify and easily reusable; 2. Keyword can

be reused in multiple test cases; 3. Not dependent on any

language;

2. THE CONCEPT

The concept behind this research approach is virtualisation of

mouse button and key board key input events. Virtualisation

of manual mouse clicks & key input is the primary problem

requires to be solved. Mouse clicks and key board key inputs

are queued as X events to the X server for the required X

client software through “XSendEvent” X-lib routine.

“XSendEvent” routine facilitates to send X event to the given

X window identifier without man in loop.

At first step, it is required to get the top window of the X-

client software under test. This is possible by using

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 272

“XQueryTree” X-lib routine with the given X-client software

name and searching from root window of the screen. It is

necessary to get window and widget hierarchy of the given X-

client software for sending Xevents through “XSendEvent” for

the required X window identifier. This is possible by the

utilisation of Editres protocol.

The most important task is allowing the tester to define test

case combinations for GUI test automation on the required X-

client system. This can be made possible by designing a tester

input file of test case combinations to be executed on the

system under test with certain keyword list & specification of

corresponding input against them. Resources of the X-client

under test (attained through editres protocol) can be used as

the basic input in deciding required unique X-window

identifier for sending X event with reference to each test case.

3. THE DESIGN

The research has been focused on the basis of keywords for

testing the X/Motif application GUI automatically for the

required or possible test case combinations. Just like any GUI

test automation, this approach also contains following main

components:

1. Application under Test (AUT) or System Under Test

(SUT): It is the X/Motif application under testing.

2. Test case generation: Test cases are given through an

input file. They are generated manually with the

knowledge of allowed keywords and the

corresponding input against them for the respective

test case.

3. Test case Execution: Execution of test cases is

automated fully with the input of test cases through

the manually generated tester input file. The

automation of GUI testing has been through

virtualization of X events for mouse button clicks and

text keyboard input.

4. Test results verification: Test results are basically

verified with the state and presence of the GUI

widgets.

5. Test observations log: The results and observations

along with error cases are logged to the given tester

results output file in ASCII format.

This approach is useful for all GUI testing automation cases at

unit, integration, system, acceptance and regression levels.

The inputs are based on GUI components functionality and

structure. This approach answers the GUI test automation

requirements such as: 1. Able to recognise or identify the

components of a GUI of the AUT. 2. Able to exercise / send

GUI events (such as mouse clicks and text field input) for the

required GUI components. 3. Able to test the functionality

underlying a GUI set of components.

3.1 How to identify the Components of X/Motif

Application GUI?

The components of any X/Motif Application GUI can be

identified basically with the associated X window identifier.

Various X/Motif GUI components that can be categorised into

different widget types are push button, toggle button, label,

option menu, radio box, combo box, main window, check box,

pull down menu, pull right menu, text widget, scroll test

widget, file selection box, dialog selection box, scrolled list,

scrolled vertical bar, scrolled horizontal bar, scale widget, up

arrow button, down arrow button, left arrow button, right

arrow button, drawing area widget. These mostly cover all

variety of recognising X/Motif widget components. As our

idea is to send X events to the identified GUI component's X

window identifier, it is now required to devise a method for

getting the X window identifier. The method of identifying

window identifiers and generating test cases for automating

the GUI testing has been devised based on certain keywords.

The widget hierarchy with the associated X window

identifiers, positions and geometry of the Application Under

Test (AUT) are attained through Editres protocol. Editres

protocol allows for getting as well setting supported widget

resources of the AUT widgets.

3.2 Test Cases Generation

The keywords framed for preparing test cases are: xappName,

tstBegin, tstEnd, testStrt, testEnd, testLevl, wdgtName,

wdgtType, wdgtData, testNrml, testRptn, seqRptn, testRang,

seqRang.

Each keyword expects zero or more input against that. Few of

the keywords can be provided optionally (with default input if

not given).

xappName: This keyword is used for giving the X/Motif

application name under test.

tstBegin: This keyword is primarily for indicating the start of

test cases input.

tstEnd: It is for indicating the end of test cases input.

testStrt: This keyword is used for test case starting with the

corresponding test case number as input against it.

testEnd: This keyword is used for test case ending with the

corresponding test case number as input against it.

testLevl: It is the facility for accommodating test case

combinations at a group level also.

wdgtName: It is the primary keyword for identifying the

associated X window identifier of the required widget or

gadget through which the necessary X events can be spooled

automatically. The X window identifier is found out using

Editres protocol with the input of full path of corresponding

Widget resource name and it's sequence number of occurrence

for the scenario of test case.

wdgtType: It is meant for providing the type of widget with

reference to the test case.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 273

wdgtData: This keyword can be used for giving necessary or

additional data for the test case of interest and for the

corresponding widget type (data such as menu item number,

option number or textual keying input). It is an optional input.

Rest of the keywords can be utilized optionally for various

purposes of test case normalisation, required number of test

case repetition, test case data range etc..

As it was mentioned, the test cases generation is manual and

tester input file of the interested test cases are prepared using

the above mentioned keywords.

3.3 How to Automate the Test Cases Execution?

The major point under automating the test case execution is

the ability of sending the GUI events automatically. GUI

events are meant as X events such as mouse clicks and text

key input to the application under test. “XsendEvent” Xlib

routine (or function) is used for sending the required Xlib

events delivered to the necessary X-window of the AUT.

“XSendEvent” routine requires five arguments to be passed as

1. Pointer to Display type (which specifies the connection to

the X server), 2. Window identifier for which the event is to

be sent to, 3. A Boolean type value (True); 4. Event mask of

long data type (ButtonPressMask or ButtonReleaseMask or

KeyPressMask or KeyReleaseMask), 5. Pointer to variable of

XEvent structure.

Once after finding out the top level X-window of the AUT

using “XQueryTree” and “XFetchName” routines, the widget

hierarchy of that instance of AUT along with geometry details

can be attained using Editres protocol and Xmu library

functions. For every given test case and for the given number

of test cases, depending on the type of widget under that test

case, necessary X-events are spooled to the associated X-

window of the widget / gadget with the required widget data

that has been provided. Since the virtualisation of mouse

clicks or buttons and keyboard input is possible, the ability for

testing the functionality underlying an AUT GUI component

or set of components has been achieved. Hence, GUI test

automation requirements have been met.

4. THE SYSTEM

A software system for automating the GUI testing of any

X/Motif application has been realised with the concept and

approach mentioned in the previous sections. It is the software

system based on X/Motif for automating the testing through

the possible test cases fed through a tester input file. This

software system is available on RHEL 5.4 and TRU UNIX

5.1B operating system based environments and is portable to

any flavour of UNIX and LINUX operating systems.

Let the software system's name as:

'XmotifAplnAutoTestSoftware'. User can test the GUI of his /

her interested X/Motif application in the respective

environment by invoking the software system as follows:

XmotifAplnAutoTestSoftware <X/Motif application name

under test>

Fig -1: Main GUI of X/Motif Application Auto Test Software

User can click over the push button titled “List The Appln

Widget Tree” for getting corresponding X/Motif application

widget tree. The widget tree will be reported in the current

working directory with the name coined as <name of the

application under test>XtestAppLst<random six alphabetic

chars>. This file can be made use of making tester input files.

The ASCII file is with contents presented as number of

widgets and widget information (serial number, window,

widget id, name, class and path). Path contents shall be used

as resource name against wdgtName keyword in the tester

input file.

A simple tester input file sample for clicking / testing the push

button of the application named as 'MainForPushBtn' is as

follows:

xappName MainForPushBtn

tstBegin

testStrt 1

testLevl 1

wdgtName 1 MainForPushBtn.formWidget.Push Me

wdgtType 10

testEnd 1

tstEnd

The above tester input file contains one test case at single level

for clicking the first occurrence of the push button consisting

of the widget resource “MainForPushBtn.formWidget.Push

Me”. The widget type 10 is for push button. “Load & Execute

Tester Input File” push button can be clicked for loading,

validating and executing test cases over the application under

test as per the contents of given tester input file. During the

test execution, the software system's GUI is made insensitive.

Message window is for displaying the error messages if any

and also for displaying the test results.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 274

The system enables for testing up to 1000 test cases through

one tester input file. It has the features of repeating any

desired test case multiple times and also the facility for giving

ranges of data input for the desired test case.

Two phases of the software system can be depicted as follows:

User has to invoke the Application Under Test (AUT) in the

respective environment.

4.1 Phase 1: Tester Input Files Preparation

This phase is manual and the test cases are generated as tester

input files for the required test combinations of the AUT.

Preparation of test cases are based on the keywords mentioned

under test case generation section. For preparing the test cases,

the widget resources are important and this can be attained

through getting the AUT's widget tree by clicking “List The

Application Widget Tree” of XmotifAplnAutoTestSoftware

system.

4.2 Phase 2: Test Cases Auto Execution on

Application under Test

Load and execute the prepared and required tester input file by

typing the name of the tester input file and by clicking the

button meant for it. As per the loaded and validated tester

input file, the execution of the test cases on the application

under test shall be as per the following flow chart shown in

Fig-2. Each test case is executed as per the test case input by

sending the required X events on to the specific X window

identifier of the X/Motif Application Under Test. The result of

the test case is verified against the mentioned X window

availability and expected output mentioned as part of the test

case.

Fig -2: Flow Chart for Test Cases Auto Execution

4.3 Results

To cover all the GUI components under X/Motif, twenty five

widget types have been identified. They are push button,

toggle button, label, option menu, radio box, combo box, main

window, check box, pull down menu, pull right menu, text

widget, scroll text widget, file selection box, dialog selection

box, scroll list, scroll vertical bar, scroll horizontal bar, scale

widget, up arrow button, down arrow button, left arrow button,

right arrow button, drawing area widget etc...

To test the capacity of this approach and to accommodate all

possible test combinations, one X/Motif application for each

category of the widget has been developed. Further, few

applications covering combinations of some or most of the

widget types were also tested. The applications were named

with the convention such as MainForPushBtn for push button

type of widget and so on. Over all fifty testers input files have

been generated with one tester input file covering test case

combinations of the corresponding AUT. The tester input files

contain test cases ranging from 1 to 1000.

The observations have been different with reference to Editres

protocol and in getting widget resources for different X

servers on TRU-64 UNIX and RHEL 5.4 operating systems.

The results are as per expectations and the testing time for

each of the tester input file is very fast. Since the delay

between two test case executions over AUT is configurable,

automation of GUI testing can be adjusted accordingly with

the necessary observing or monitoring requirements. The

system is very helpful in covering many of the test cases

which cannot be done manually. It is helpful in regression

testing and enhances the confidence on the AUT reliability.

Since many or all combinations of test cases are possible to

get tested and observations logged, it elevates the GUI testing

and makes easy and error less. Designers and testers are

required to prepare the tester input file(s) for any X/Motif

application once only. The preparation of tester input file is

completely transparent and not based on any scripting or

programming language. It is very much possible to repeat the

test case multiple times either with the same input or with

range of input. This approach and the concept do not require

any recording of the test cases.

The verification of the test cases (Test oracle mechanism) are

possible by looking at the state of the required widget or

window through the corresponding widget resource mentioned

against a specific keyword. The call back procedures

underlying the GUI components can be tested through the auto

click and auto text inputting. The system is helpful in using at

all levels of testing of the X/Motif application. This approach

and the system are also helpful in generating automatic

demonstration of the corresponding X/Motif application.

Load the required Tester input file

If tstCase <=

noOfTstcases

AUT

Send X Events to the identified
 Xwindow id of AUT

Verify the test result or error
and log to results file

No

Yes

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 275

5. CONCLUSIONS

Test case preparation is manual and the tester requires

preliminary knowledge about widget resources. The

automation of test case generation can be thought of

enhancement to this software system. The software under

testing shall be compatible to Editres protocol. However, this

concept and approach of testing the X/Motif application is

distinct from record-playback methods and is the required

solution for GUI test automation. This software system is

certainly a boost to the X/Motif GUI testing and a bonanza for

the improvement of software development life cycle process.

ACKNOWLEDGEMENTS

The author would like to thank Mr B.Prabakaran,

MDPD/MDG, ISRO Satellite Centre for the help and support

during the realization of this research.

REFERENCES

[1] The definitive guides to the X window system (Volume

One): Xlib Programming Manual for Version 11 by

Adrian Nye; O’Reilly & Associates, Inc.

[2] The definitive guides to the X window system (Volume

Four): X Toolkit Intrinsics Programming Manual for

OSF / Motif 1.2 Edition by Adrian Nye and Tom

O’Reilly; O’Reilly & Associates, Inc.

[3] The definitive guides to the X window system (Volume

Six A): Motif Programming Manual for OSF / Motif

1.1 Edition by Dan Heller; O’Reilly & Associates, Inc.

[4] Graphical User Interface with X-windows and Motif

By Muralidhar R. Rao & Ganga Prasad G.L; Wiley

Eastern Limited.

[5] Software Test Automation: Effective use of test

execution tools by Mark Fewster & Dorothy Graham;

Addision-Wesley.

[6] “Test Automation” by Macario Polo, Pedro Reales,

Mario Piattini and Christof Ebert, IEEE Software,

January/February 2013.

[7] http://www.rahul.net/kenton/editres.html

[8] http://www.rahul.net/kenton/events.html

[9] linux.die.net/man/3/xtestfakebuttonevent

[10] Xtstlibrary(cgit.freedesktop.org/xorg/lib/libXtst/libXtst

-1.2.2.tar.gz)

[11] http://www.linuxquestions.org/questions/programming-

9/simulating-1-mouse-click-594576/

[12] http://www.x.org/archive/X11R6.8.1/doc/editres.1.html

[13] http://www.linuxdocs.org/HOWTOs/XWindow-User-

HOWTO-2.html

[14] http://www.lehman.cuny.edu/cgi-bin/man-

cgi?editres+1

[15] Xmu library

(cgit.freedesktop.org/xorg/lib/libXmulibXmu-

1.1.2.tar.gz)

[16] http://homepage3.nifty.com/tsato/xvkbd/xvkbd-

3.5.tar.gz

[17] http://www.semicomplete.com/projects/xdotool/xdotoo

l.html

[18] sourceforge.net/projects/xdotool-gui/xdotoolgui-

1.2.1.tar.gz

[19] cgit.freedesktop.org/xorg/app/editres/

[20] http://www.rahul.net/kenton/xsites.frames.html

[21] manpages.ubuntu.com/manpages/lucid/man1/xdotool.h

tml

[22] http://www.x.org/released/X11R7.6/doc/libXmu/Xmu.

html

http://www.rahul.net/kenton/editres.html
http://www.rahul.net/kenton/events.html
http://www.semicomplete.com/projects/xdotool/xdotool.html
http://www.semicomplete.com/projects/xdotool/xdotool.html

