
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 67

CONTINUITY OF DEVELOPER RANKING AND GROWTH CHANGE

PREDICTION

Anil Kumar

M.Tech Scholar, Galgotias University, Greater Noida, UP, India

Abstract
Enormous amounts of raw content and information exist universally and large databases contain unordered, ungraded and unranked

data. Ranking is most famous, ubiquitous and comprehensive techniques to build hierarchy of unordered group of items by calculating

rank of every item based on one or several multiple attributes values. This technique allows analyzing and evaluating product

performance with other products. Widespread usage of ranking technique represents relationship among several groups of well

known items.

In this analysis paper, We retrieve promising information from Git repository and demonstrate important fact of developers working

individually or in a group and rank the developers based on core activities and contribution on several projects, bug resolving

processes, source code commit and expertise in multiple languages by mining Git (a version control repository system). We discover

key developers, influential software practitioner, projects and programming languages. We found developers grow over time in

diverse areas. Our result shows developer ranking can assists project manager to take better quality decision to assign projects and

gain help from expertise developer to support newly joined team members in the organization. Ranked developer can assists business

to improve source code quality, timely delivery of projects, lower maintenance cost and better customer satisfaction.

Keyword - software practitioners, ranking, developers, Language-Language, commits

--***--

1. INTRODUCTION

Ranking has important aspects to assists users to explore

popular and high quality content over low graded,

unclassified, unorganized and unordered content which guide

to take better quality decisions. It allows us to remove

impurities and incorrect content which could provide

fashionable, manageable and interesting content. Ranking is

measurement of each subject and objects attribute single-

attributes and multiple- attributes. For example personal

favorite movies disks and list of songs, magazines, newspaper

and sport items etc. Several ranking technique exists globally

but visualization, comparison, analysis and performance of

this techniques has to be performed to get insight into it and its

results. Software developers works on several projects,

resolves bugs, commits and write program code in multiple

programming languages in different team in their work life

cycle. This paper uses term developer or author or software

engineer, software practitioner interchangeably with

developers. Discovering and Distinguishing dedicate,

committed, experienced, popular and expertise developer for

particular field in the software project is critical issue for

senior managers in the big organization. Managers always

have challenge for selecting expert members from large

software team. If any problem occurs in specific component or

source code in big projects, then expert developers of similar

projects of same team or other team is assigned to resolve the

bug to increase the efficiency of the work and improve coding

standards. Identifying individual experts in large team of

software projects is challenging task since large project is

spread over continent. Individual expertise in several project

activities and leadership behavior is also mandatory to help

team with different mindset in large groups. Highest number

of experts in the team results in lower risk and increase

performance and productivity whereas software team with less

experience will end with loss of cost, timely delivery and

lower quality source code and decreased productivity. They

can ask a list of related questions to all team member to select

the key developer could be possible but if there could be a tool

or some sort of method to indentify key developer would be a

better option. The tool that we could produce is to rank

developers based on functional areas, key work and activities,

expertise on projects, project type, kind of programming

languages worked on, efficiency in identify bug and resolving

bug, motivation, commitment, personal and professional

behavior, and characteristics of over all work and activities in

past projects in overall career. Next section described related

work. Section 3 discusses methodology. Section 4 is about

result observation and analysis on particular project and

programming language. Section 5 discusses about overall

results and section 6 is about conclusion.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 68

2. RELATED WORK

Analyzing software projects has been deepen and resulted in

improved metrics but little analysis successfully proceeded

with identifying key developers and ranking those developers

in diversity of areas. Some of few works have done in Jifeng

Xuan et al. [1]. Their aim is to rank contribution of the

developers by addressing the problem of developer

prioritization in bug repositories. Explored two different

methods namely model the developer prioritization and

assisting predictive task with new model. They investigated

three different problems including the developer ranking based

on products, evolution over time and tolerance of noisy

comments and also considered strengthen developer ranking to

improve three predictive task i.e. bug triage, severity

identification and reopened bug prediction in bug repositories.

Investigated the performance of the newly model and its

application in bug repositories of Eclipse and Mozilla and also

analyzed the developer prioritization evolution over time. The

results show that the developer prioritization can assist

software tasks in bug triage. PageRank [11] and Topic

Sensitive Page Rank [12] techniques discover significant node

in network graph. PageRank generally used by Google to

discover all directly or indirectly connected node on website

spread globally and show ranked pages as result set and TSPR

highlight search word on searched website pages based on

topic of the context. Thung Ferdian et al. [2] they investigated

the network structure of social coding in GitHub. They

distinguished leading developers and projects on sub network

of GitHub by PageRank approach. It helped developers in

performing their tasks more efficiently by understanding how

developers and projects are actually associated to each others.

Found out the relationship among projects, relationships

among developers and most influential projects and

developers. They analyzed that projects networks in GitHub

are more interconnected than human built network. Project

networks only need one common developer to establish a

relation between projects. In the developer-developer

relationship, enables more collaborations among developers in

social coding. Finding influential projects and developer on

the basis of page rank gives more developer with many

projects. Their results show that distribution of project-project

network graph generally follows power law while developer-

developer does not. Our language-language network is also

extended version of their developer network algorithm. Igor

Steinmacher et al. [4] describe study on newly joined authors

joining software projects process since they can be key and

probable contributor to the software projects growth. Their

study discovers difficulties faced by newly joined authors and

tried to verify usefulness of the asked queries. Their results

show that retention rate is below 18 percent in mailing list and

13 percent in the issue manager and pointed out some

expected cause for leaving the project. Overall analysis

presents, new comer is not much interested to join past project

due to inconvenience caused by improper response and

clarification on particular doubt. They understood how

software practitioner collaborate on software project and how

new-comers behavior changes in project team because this

aids management to take further decision on retention activity.

Andrew Dittrich et al. [3] described a method to model a

network as software projects from control version repository.

They demonstrated a technique to identify the key developers

and subject matter expert who work together in group and how

closely meet the developers on projects. Their further

investigation done to find which groups of authors work

together and how closely join developers on a project. They

used three different type of algorithm that gave the best results

were greedy method, the modularity maximization method

and spin glass method and performed on three specific open

source projects namely Subversion, Audacity and Super
TuxKart. Their method assumes that modifications made by

each author are common and relevant to the file being

modified but this is not always true in particular cases.

According to their network analysis technique, this can predict

the core developers for specific projects and measure

probability of developer work together on the same area of

code. Chen-Te Li and Show-De Lin [5] proposed several

measures for example central-node based, similar node based

and diverse relation based and tensor based mechanism to

identify central graph nodes in heterogeneous social network

and further extend it to perform role based clustering

technique to identify node which could result in network of

similar roles. They collect all types of relationship exists

between direct and indirect nodes and captured all relational-

path between nodes and adjacent nodes. Jitesh Shetty et al. [6]

discover significant nodes based on graph entropy as event-

basis applied on huge set of email communicated data set of

Enron. They used label based graph to point lead nodes

making gap of individual relation. Wasserman et al. [7] higher

central node score recognize significant member with the

substantial hierarchy in the network. These members would be

assumed to have a significant role in simulated and regular

behavior. This also applies to different kinds of network.

Linton C. Freeman [8] defines set of measure of central nodes

on basis of betweenness of group of neighbored nodes. Their

measure is point and graph centrality based which defines

degree of central nodes falling point on shortest path between

each other. Kazuya Okamoto et al. [9] combine past closeness

centrality measures and discover a new algorithm to rank top

vertices based on highest measure value of closeness

centrality. Their algorithm performs faster than expected when

applied on all vertices to calculate closeness centralities.

Douglas R. White and Stephen P. Borgatti [10] reviewed work

of Freeman’s centrality measure of betweenness of undirected

graph and purposed directed graph for the same. They

included point centrality, distinct maximum central node

graph for direct graph, incoming and outgoing arc and arcs for

maximum central structure. They also considered relative

betweenness and individual points. This extended work on

directed graph improves the find in the large network with

direct connected-relation.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 69

3. METHODOLOGY

 This section we demonstrate our methods for building a

sample software entity network from GitHub repositories. We

present our new algorithm to analyze the network.

3.1 Data Set Collection and Processing

Enormous amount of duplicate and distinct data is available

world-wide in several formats. Our work is based on Git

distributed and scalable version control repositories of

GitHub. Git (http://git-scm.com/) is the most recent data

freely available globally which contains hug data in complex

and structured format. GitHub is source-code management

site which hosts around millions of software repositories and

managed by millions of regular and registered software

practitioners. As part of our work, investigated 108718

random projects, users (498574) out which distinct developers

(83604) worked on 108616 different projects,

Commits(593573), Bugs(149821), Bug Comments (534104)

and 20 distinct programming languages used on multiple

projects.

3.2 Building Network Structure

We build several kinds of software entity network from

GitHub huge and complex dataset - a language-language

network, a developer based network and bug-bug based

network, follower based network and network based on

number of developers taking care of other projects. Network is

built through directly or indirectly connected nodes and edges

with or without weight. Some network graphs are based on

weight. Weight is assigned with the number of incoming links

to nodes. For example if particular node has five incoming

links or nodes meaning weight of that node becomes five.

Unweighted network structure graph does not contain any

predefined values. Languages have at least one common

software practitioner or developer. While building language-

language network, we present a set of step presented in

Algorithm 1. Each step will show how the language based

network is being constructed. Each Steps are as follows: We

initially pass language name as input to the algorithm, Get all

available language as a set. For each language from the set,

retrieve the list of projects that are based on language in the

list, then find all available developers who works on the

projects, get set of projects in which developer are directly or

indirectly involved and finally list of available language is

compared with input language. Below is the basis idea

represented in the form of algorithm to build language-

language network. Other entities network building in this

paper is based on this algorithm.

3.3 Language-Language Network building

Algorithm 1

Input: Languages // List of programming

languages

 Linked-Network ← Ø ; // Language-Language network

foreach language Li in Languages do

 Projects ← ListProjectLanguage(Li)

 foreach project Pi in Projects do

 Developers ←ListAssociatedDevelopers(Pi) foreach

developer Di in Developers do

ReturnedProjectList ← listProjects(Di)

 foreach project Pj in ReturnedProjectList do

 setofLanguage ← ListLanguages(Pj) foreach

language Lj in SetofLanguage do connection ←

CountCommonDevelopers(Li, Lj) Linked-Network ←{

Linked-Network, connection }

 return Linked-Network

3.4 Sample Snapshot of Language-Language

Structural Network

Fig 1: Demonstrates network structure of language based

network.

Snapshot showing in the Figure1 contains 66 edges and 11

nodes in this language based network hierarchy. We can

describe as one project (bitcoin) node having two different

languages (TypeScript and C++) node. Developer nodes (830

and 997) directly associated with language (TypeScript) to

(bitcoin) project node and several developers except 830 and

997 nodes are directly connected to (C++) language node and

(bitcoin) project node. Relationships among languages and

developers have also been shown. Since C++ and TypeScript

are type of language node. Relationship between developers,

project and language node have been illustrated. It shows that

they all collaborate on the same projects and have same type

of relationships. Bitcoin project node is central node

representing language node and developer nodes structurally

with the help of common relationship among developers and

languages.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 70

4. RESULT OBSERVATOIN AND ANALYSIS

 We execute the newly designed algorithm on our GitHub

dataset and perform result analysis. Our observation results

show in terms of growth of several entities including

developer, language and commit. Ranking evaluation of these

entities has been performed.

4.1 Brief Data Set Survey on Language Associations

This section demonstrates interest growth, advancement and

impact in each and specific software entity. We describe each

entity taking specific advancement history in it. Language

history for over six year shows that selections of particular

programming language for critical projects have changed and

some other language is taking place. Selections of object

oriented language have also remained constant but decreased

irrespective of user-friendly development environment.

Programming languages are critical part for projects and

developers selection. If the existing team does not have

expertise in particular language and assigned for project then

that could make big difference to team and projects.

Chart 1 : Developer interest growth in the particular language

Chart 1 result shows that Ruby is favorite language for

software developer. Other language for example PHP,

JavaScript and Python is also competing Ruby. Object-based

and oriented language like C, C++ and C# are bit below

developer expectation.

Chart 2: Listing project growth in top most languages

Chart 2 Project-wise result in listed language shows that

JavaScript, C++ and Ruby are chosen mostly among other

languages by project manager. In this result, JavaScript and

C++ are better choice than Ruby, which is developer favorite

choice in scripting view point. These selected projects are

based on developer collaboration and shared sourced code

basis. Only top most languages have been demonstrated here

to present growth of project in each language. Most struggling

programming languages are C# and R and others are CSS and

TypeScript. These results are based on developer choice over

common projects.

Chart 3 : Language-wise overall bug reported

Result shows that more bugs were reported in Ruby and PHP

in comparison with other ideal languages. Object-oriented

languages for example C++, C# and Java performs better

shown in chart 3. Since object-oriented language have always

been less bug producer, developers can have faith on it while

0

1000

2000

3000

4000

5000

6000

7000

Ja
v
aS

cr
ip

t

P
H

P

C
+

+

Ja
v
a

C
S

S

R
u
b

y

P
y
th

o
n R C

S
ca

la C
#

T
y
p

eS
cr

ip
t

Developers

0
5

10
15
20
25
30
35
40
45

Ja
v
aS

cr
ip

t

P
H

P

C
+

+

Ja
v
a

C
S

S

R
u
b

y

P
y
th

o
n R C

S
ca

la C
#

T
y
p

eS
cr

ip
t

Projects

0

10000

20000

30000

40000

50000

60000

Ja
v
aS

cr
ip

t

P
H

P

C
+

+

Ja
v
a

C
S

S

R
u
b

y

P
y
th

o
n R C

S
ca

la C
#

T
y
p

eS
cr

ip
t

Bugs

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 71

writing software programs on critical and important software

projects. Around 5811 developers on unique projects reported

52426 bugs on Ruby language which is the highest among all.

Again all these results analysis are based on common

relationship between developer, projects and language.

Chart 4 : Commits and Bug report comparison

Chart 4 present more commit and less bugs reported. As we

observe PHP, C++ and C have got more commits but less bug

whereas Ruby commit more and generates more bugs.

Software practitioner and software development management

team can take decision based on commits and bugs reported

by users and developers in specific language. Choosing

particular language is critical decision when fresh projects

team start working.

Chart 5 : Language-wise source code pull requests

 Pull request is notification to project maintainer about

modification in project fork. It is about discussion about

potential modification on source code and code review on

changed code set. It is sum of review comparison, Bugs

reported and commit comments. Ruby has the highest pull

request whereas CSS has the lowest among other scripting

languages as shown in chart 5.

Chart 6 : Developer contribution distribution

Chart 6 demonstrates developer contribution in multiple

project activities. Top developers contribute and share their

expertise and assisting other developers to improve their

quality of code, timely delivery and bug less project

completion. Different developers have specific qualities that

help others. Some developers might be expertise some

language but they can fix more bugs on several languages and

some might have worked on some projects but have less bug

resolving activities.

Developer (MechanisM) has committed more source code and

reported more bugs also. Chiehwen and imageoptimize and

pomebredanne worked on the highest number of projects and

languages. However, all developers are the best performer and

contributor on multiple projects and programming languages.

4.2 Year-Wise Statistics

Year-wise statistics shows growth of developer and languages

improves over time.

0

20000

40000

60000

80000

100000

120000

140000

Ja
v
aS

cr
ip

t

P
H

P

C
+

+

Ja
v
a

C
S

S

R
u
b

y

P
y
th

o
n R C

S
ca

la C
#

T
y
p

eS
cr

ip
t

Commits Bugs

0

5000

10000

15000

20000

25000

30000

R
u
b

y

P
H

P C

Ja
v
aS

cr
ip

t

P
y
th

o
n

S
ca

la

Ja
v
a

T
y
p

eS
cr

ip
t

C
#

C
+

+ R

C
S

S

Pull_Requests

0
20
40
60
80

100
120
140

ch
ie

h
w

en

im
ag

eo
p

ti
m

is
er

p
o

m
b

re
d

an
n
e

a5
an

0

jc
1

ar
k
e

B
ra

u
n
so

n

sk
o

p
p

k
ai

q
u
ew

d
ev

h
4

ck
3

rm
1

k
3

le
ei

g
h
t

M
ec

h
an

is
M

G
er

H
o

b
b

el
t

Projects Language

Commits Bugs

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 72

Chart 7: Developer interest in languages

Developer interest in various programming languages has

changed continuously year-to-year. Several new language

came to picture but not able to survive for more period of

time.

Above result shown in chart 7 predict that JavaScript and

Ruby have been in great demand of developers. Software

practitioner contributes to multiple projects based on work

experience on particular programming language. Project

manager assigns projects to developer and language specific

team to increase productivity of the team and successful

completion of the software projects.

Chart 8 : Growth of project and language

Tremendous growth of projects changes over year-to-year

whereas language remains constant. Drastic increase between

years 2010 - 2012 in projects growth shows that multiple

developers joining on the projects and the organization has

change over time.

Chart 9 : Continuous growth of developers over year

Continuous growth of developers increased in few years

whereas language remains constant. Drastic increase in

developer’s growth shows that joining on multiple projects

and the team has increases over time. A developer switches to

multiple languages when projects get completed and new

project is assigned to work on. Languages also get changed

when some specific component of the same project is to be

developed on the same language. Developers have to choose

other language irrespective of expertise, when new projects

are assigned to their team and their role gets changed.

4.3 Ranking Entities

Table 1: Developer ranking based on contribution to multiple

projects

Project-wise developer ranking

Developer Rank

Dense

Rank Projects

Philippe

Ombredanne 1 15 28

imageoptimiser 2 16 31

Eugene

MechanisM 3 10 12

Braunson 3 12 15

John Clarke 3 13 16

Table 2: Developer ranking based on expertise in several

languages

Language based developer ranking

Developer Rank

Dense

Rank Language

Philippe

Ombredanne 1 9 9

Imageoptimiser 2 8 8

Alex Schoof 3 7 7

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014

0

2000

4000

6000

8000

10000

12000

14000
C

#

C
+

+

C
lo

ju
re

C
S

S

Ja
v
a

Ja
v
aS

cr
ip

t

P
er

l

P
H

P

P
y
th

o
n

R
u
b

y

S
ca

la

S
h
el

l

T
y
p

eS
cr

ip
t

Developers Year

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014

0

100

200

300

400

500

600

1 2 3 4 5 6

Projects Languages Year

2004

2006

2008

2010

2012

2014

0

10000

20000

30000

40000

50000

1 2 3 4 5 6

Languages Developers Year

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 73

John Clarke 3 7 7

Braunson 3 7 7

Table 3: Source code committed by developer

Commit-wise developer ranking

Developer Rank

Dense

Rank Commits

Fabien

Potencier 1 162 7903

Tenderlove 2 161 3158

Asparagui 3 160 2575

Bnoordhuis 4 159 2400

Kevinsawicki 5 158 1992

Table 4: Developer activities on bug reports

Bug-wise developer ranking

Developer Rank Dense Rank Bugs

Fabien Potencier 1 119 2863

Rafael franca 2 118 2309

Ben Noordhuis 3 117 1770

Steve Klabnik 4 116 1619

Parker Moore 5 115 1450

Fig 2 : Project Rank vs. Language Rank

5. OVERALL RESULT ANLAYSIS

Rank Analysis: Developer ranking is technique to assign

highest priority to every software practitioner in GitHub and

prioritize his task and contribution of individual and team to

aid specific software jobs. Ranking has been done based on

Microsoft ranking algorithm. Analyzing table 1 and table 2,

we find that Philippe Ombredanne, Imageoptimiser and John

Clarke are common in Project and Language based ranking

among top 5. This shows that they have common activities and

deep relationship between them. In same way table 3 and table

4 have developer Fabien Potencier in common with bug

resolving and source code commits. Philippe contributed on

twenty eight different projects and nine programming

language but Imageoptimizer worked on thirty one software

projects and eight language which is one less than Philippe.

We discover evolution of software practitioner ranking for

longer period of time. We demonstrate that developer ranking

is most effective way to improve work and increase

productivity in team coding based on identification of key

developers. Developer ranking can increase more information

to decision making system. The results are divided base on

different factor namely priority of developer over number of

projects, developers interested on selected programming

languages, number of bugs reported and further activities on

the those works. Developer involvement in source code

commits has been taken into account. We extract several kind

of information based on common activities on projects works,

languages participated and expertise in the language, bug

reports on the multiple projects and committed source codes

on the same projects or same kind of projects. Fabien

Potencier contriute to source commit in several projects. He

committed around 7903 times and Kevinsawicki committed

only 1992 commits which is in among top 5 ranks. Fabien

Potencier and Rafel Franca reported 2863 and 2309 bug

reports which is maximum among others developers.

Our result demonstrates that a group of developers have high

contribution to several projects. Some have contributed to

specific language and have performed well on that language.

Few developers who have high contribution to commit and

bug reports and resolving bug have not in top list of developer

and language list. They have better contribution to their own

interest group. For example Philippe Ombredanne,

Imageoptimiser, Braunson and John Clarke are top rankers in

language and projects based work. They have contributed to

multiple projects and languages but not have much

contribution in commits and bug reports activities.

Our results can predict that each developer can have expertise

in multiple languages and contributed to several distinct

projects but not in the bug reports and source code commits.

Developers having good command over bug reports can get

testing bug reports role in future projects. Developers having

expertise in multiple languages can assure that they can be a

part of decision making team when new projects is being

0

1000

2000

3000

4000

5000

6000

7000

8000

0

20

40

60

80

100

120

140

160

0 5 10 15

Dense Rank Language_Rank

Project_Rank Author Count

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 74

designed and assigned to a group of developers in the

organization.

6. CONCLUSIONS

This paper described developers, projects and language

growth in specific period of time and long periods. We extract

Git version control repository system to model our network

and performed analysis. We extracted 108718 random

projects and 498574 regular users and 83604 unique

developers who were common in projects work and language

specific work. Our overall result is based on common

developer activities on several entities.

REFERNCES

[1] Jifeng Xuan, He Jiang, Zhilei Ren, and Weiqin Zou.

"Developer prioritization in bug repositories" ,

ICSE, page 25-35. IEEE, (2012)

[2] Thung, Ferdian; LO, David; and JIANG, Lingxiao,

"Network Structure of Social Coding in GitHub"

(2013). Research Collection School of Information

Systems (Open Access).

[3] Andrew Dittrich, Mehmet Hadi Gunes, Sergiu Dascalu,

"Network Analysis of Software Repositories:

Identifying Subject Matter Experts", Complex

Networks Studies in Computational Intelligence

Volume 424, 2013, pp 187-198

[4] Igor Steinmacher, Igor Wiese, Ana Paula Chaves,

Marco Aurélio Gerosa , "Why do newcomers abandon

open source software projects?" ,Cooperative and

Human Aspects of Software Engineering (CHASE),

2013 6th International Workshop on IEEE, 2013, page.

25-32

[5] Cheng-Te Li and Shou-De Lin, "Centrality Analysis,

Role-based Clustering, and Egocentric Abstraction for

Hetrogeneous Social Networks" 2012 International

Conference on Social Computing ((PASSAT,

SocialCom), IEEE, Sept 2012

[6] J. Shetty, and J. Adibi. 2004. Discovering Important

Nodes through Graph Entropy: The Case of Enron

Email Database. In Proceedings of ACM Workshop on

Link Discovery (LinkKDD’05), 74–81.

[7] Wasserman, S. & Faust, K. (1994), "Social Network

Analysis: Methods and Applications", Cambridge

university Press.

[8] Freeman, Linton C., "set of measures of centrality

based on betweenness.” Sociometry Vol. 40, No.1,

1970, 35-41.

[9] Kazuya Okamoto, Wei Chen, Xiang-Yang Li,

"Ranking of Closeness Centrality for Large-Scale

Social Networks", Second Annual International

Workshop, FAW 2008, Changsha, China, June 19-21,

2008, Proceeedings, pp 186-195

[10] Douglas R. White, Stephen P. Borgatti, "Betweenness

centrality measures for directed graphs", Published by

Elsevier B.V., Volume 16, Issue 4, October 1994,

Pages 335–346

[11] Page, Lawrence and Brin, Sergey and Motwani, Rajeev

and Winograd, Terry (1999) The PageRank Citation

Ranking: Bringing Order to the Web. Technical

Report.Stanford InfoLab.

[12] Haveliwala, “Topic-Sensitive Pagerank”, Proceedings

of the 11th international conference on World Wide

Web (2002): 517-526

[13] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed

E. Hassan, Audris Mockus, Anand Sinha, and Naoyasu

Ubayashi, "A Large-Scale Empirical Study of Just-in-

Time Quality Assurance" IEEE Transactions On

Software Engineering, Vol. 39, No. 6, June 2013

[14] Zimmermann, T. and Nagappan, N., "Predicting

Defects using Network Analysis on Dependency

Graphs," in 29th International Conference on Software

Engineering, 2007

[15] Kim Herzig, Sascha Just, Andreas Zeller, "It's not a

bug, it's a feature: how misclassification impacts bug

prediction", Proceeding ICSE '13 Proceedings of the

2013 International Conference on Software

Engineering, Pages 392-401

[16] Shivkumar Shivaji, E. James Whitehead, Jr., Ram

Akella, Sunghun Kim, "Reducing Features to Improve

Code Change Based Bug Prediction", Journal IEEE

Transactions on Software Engineering archive Volume

39 Issue 4, April 2013, Pages 552-569

[17] Dongsun Kim, Yida Tao, Sunghun Kim, Andreas

Zeller, "Where Should We Fix This Bug? A Two-

Phase Recommendation Model", IEEE Transaction on

Software Engineering, VOL. 39, NO. 11, NOVEMBER

2013

[18] Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A.,

Succi,G., “A case study on the impact of refactoring on

quality and productivity in an agile team”, In Proc. of

the 2nd IFIP Central and East European Conference on

Software Engineering Techniques CEE-SET 2007,

Poznan, Poland (2007).

[19] Huzefa Kagdi, Michael L. Collard and Jonathan I.

Maletic1, A survey and taxonomy of approaches for

mining software repositories in the context of software

evolution, Journal of Software maintenance and

evolution : Research and Practice J. Softw. Maint.

Evol.: Res. Pract. 2007; 19:77–131

[20] Xiao Yuan Xie and Tsong Yueh Chen and BaoWen Xu

"Isolating Suspiciousness from Spectrum-Based Fault

Localization Techniques", In Proceedings of the 2010

International Conference on Quality Software (QSIC),

2010, page 385-392, IEEE

[21] Wong, W.E. and Shi, Y. and Qi, Y. and Golden, R.

"Using an RBF neural network to Locate Program

Bugs", In Proceedings of the 19th International

Symposium on Software Reliability Engineering, 2008,

page 27-36, 2008, IEEE/ACM.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596554
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596554
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596554
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596554

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 05 | May-2014, Available @ http://www.ijret.org 75

[22] Santelices, R. and Jones, J.A. and Yu, Y. and Harrold,

M.J. "Lightweight fault-localization using multiple

coverage types ", In Proceedings of the 31st

International Conference on Software Engineering,

2009, page 56-66, 2009, IEEE.

[23] Xutao Li, Ng, M.K., Yunming Ye, " MultiComm:

finding community structure in multi-dimensional

networks", Knowledge and Data Engineering, IEEE

Transactions on Volume:26,Issue: 4, April 2014, pp.

929 - 941, IEEE

[24] Huzefa Kagdi, Michael L. Collard and Jonathan I.

Maletic, "A survey and taxonomy of approaches for

mining software repositories in the context of software

evolution", Journal of Software maintenance and

evolution : Research and Practice J. Softw. Maint.

Evol.: Res. Pract. 2007; 19:77–131

[25] Anil Kumar, “Evolution of social developer network in

oss: survey", International Journal of Research in

Engineering and Technology,Volume: 03 Issue: 04 |

Apr-2014

BIOGRAPHIE

I graduated from Gaya College Gaya, did

MBA and MCA from Manipal. Currently I

am M.Tech (CSE) Scholar from Galgotials

Univeristy, UP, India.

