
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 03 | Mar-2014, Available @ http://www.ijret.org 278

MULTI-STEP AUTOMATED REFACTORING FOR CODE SMELL

M.Lakshmanan
1
, S.Manikandan

2

1
Assistant professor,

2
PG Scholar, Department of CSE, Gnanamani College of Engineering, Tamilnadu, India

Abstract
In computer programming, code smell may origin of latent problems in source code. Detecting and resolving bad smells remain time

intense for software engineers despite proposals on bad smell detecting and refactoring tools. Numerous code smells have been

recognized yet the sequence in which the detection and resolution of different kinds of code smells are performed because software

engineers do not know how to optimize sequence. In this paper, the novel refactoring approach is proposed to improve the

performance of programs. In this recommended approach the code smells are automatically detected and refactored. The simulation

results propose the reduction of time over the semi-automated refactoring are achieved when code smells are refactored by using

multi-step automated refactoring.

Keywords: Code smell, multi step refactoring, detection, code resolution, restructuring etc

--***--

1. INTRODUCTION

Multi step software refactoring is an approach for

restructuring an existing body of code and altering its internal

structure without changing its external behavior by extract the

design of original source code and explores the new design, in

order to improve some of the nonfunctional attributes of the

software. The code smell became complex to evaluate in

programs. Code smells are usually not bugs, but it is not

technically incorrect and prevents the program from

functioning. Instead the code smell indicates weakness in

design that may be slowing down in the development or

increasing the risk of bugs or failure in the program [1]. So

software engineers need detection tools and appropriate

refactoring method for restructuring the programming codes

by without alters the behavior of the original source code in

the applications [1].

In this approach, we make use of detection tools for detection

and resolution of code smells in java programs. The manual

detection of code smells in huge system became complex and

also consumes more time especially those involving more than

one file or package. So, we go for the tools used are probable

to detect code smells automatically and then multi step

software refactoring is implemented in fully automated

environment to remove code smells in the program [2]. As a

result, the code smell in the programs are detected and

refactored automatically.

2. RELATED WORK

In this Section, we first review related works addressing the

code smells.

2.1 Refactoring in Automatically Generated

Programs

Software systems experience incremental modifies more than

time in arrange to deal with original necessities [1] [2]. Since

the new design is not set for each new requirement in general,

the addition of functionality brings the risk of degrading the

quality of the design (structure) of the system. A common

approach to mitigate this risk engages the use of refactoring.

Refactoring aims at improving the design of accessible code

by introducing structural alteration lacking changing its

performance.

The motivation for refactoring the code of a system is that a

well-designed system is normally easier to keep and expand.

Refactoring is now a core element of software engineering put

into practice, and is supported by the insertion of refactoring

tools in well-used incorporated development environments [2].

Whereas the software refactoring is to obtain a quality

software design and it decides the type of refactoring based on

the situation. Newly, search-based approaches to mechanize

the application of refactoring contain be proposed. These

move toward cast the refactoring as an optimization trouble,

where the objective is to get better the design excellence of a

system based on a set of software metrics After originate the

refactoring as an optimization problem by defining the

solution representation, search operators and fitness function,

several different methods can be applied to the problem of

automated refactoring [3]. So far, the thought of habitual

refactoring has been practical only to human-written code.

2.2. Other Related Techniques

Researchers have examined clone detection methods [6] to

notice copy code in programs exceeding hundreds of

thousands lines of code. All of these methods include known

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 03 | Mar-2014, Available @ http://www.ijret.org 279

qualities and deficiencies, but as of today, little is recognized

on where to fit these methods into the software preservation

process. The clone detection methods contrast three delegate

detection methods (simple line matching, parameterized

matching, and metric fingerprints) by earnings of five small to

medium cases and analyses the dissimilarity between the

reported equal. Based on this trial, it shows that (1) Easy line

matching is most excellent suited for a first crude impression

of the copy code; (2) metric fingerprints work finest in blend

with a refactoring tool that is able to remove copy subroutines;

(3) Parameterized identical works optimum in mix together

with extra fine-grained refactoring tools that work on the

statement stage.

Detection methods of code clones are a two stage procedure

which contains of a revolution and an assessment stage [4]. In

the first phase, the source text is transformed into an internal

format which allows the use of a more efficient comparison

algorithm. Through the following assessment stage the

definite matches are noticed. Due to its inner position, it is

sensible to classify detection methods according to their inside

format. An overview of the dissimilar methods available for

each category while selecting a representative for each

category like String Based, easy Line corresponding,

Parameterized Line Matching, and Token Based.

3. DETECTION AND RESOLUTION OF CODE

SMELLS

The detection tools which detect the different kinds of bad

smells occur in the program, usually the detection tool

recognizes the exact kind of code smell, e.g., the clone

detection tool covers only clones in the program. The software

engineer once confirmed the detected code smell and decides

the software refactoring method to sanitary code smells. The

resolution sequence of code smell may simplify the

refactoring process, in such a way multi step software

refactoring is carried out to evaluate the behavior of the

program. This sequence of one type of code smell may affect

the detection and resolution of another kind of code smell.

Therefore, the code smells detection and resolution to make

simpler by using the suitable detection and resolution

sequences.

Fig -1: Detection and Resolution of Code Smell

As a result of this approach, we can automatically detect the

evaluated code smells (Table 1) and also carried out an

automated refactoring without a human interaction, by these

results input of original java source code program contain

code smells can be automatically refactored and finally getting

an refactored source code without a code smells.

4. TOOLS AND METRICS

Software engineers necessitate tools to carry out the code

detection and software refactoring either automatically or semi

automatically [4]. In this paper, we make utilize of software

tools, the integrated development environments (IDE), such as

Eclipse, Microsoft Visual Studio and Intellij Idea JDEvAn and

code-Imp support software refactoring. These tools are

described in the following categories.

JDEvAn (Java Design Evaluation and Analysis) is an Eclipse

plug-in developed in the University of Alberta. It evaluates a

design evaluation history of software system and provides the

information about the system history. In this paper, we use the

java fact extractor and UMLDiff an design differencing

algorithm. Code-Imp (Combinational Optimization for Design

Improvement) is an automated framework for software

refactoring developed in the University college of Dublin,

Ireland. This automated framework is used to refactoring the

code smells occurs in the java source programs. This tool

support Java version 6 source codes as input and produces

refactored source code.

Duplicated Code was detected by PMD and Long method,

Large Class, Long parameter list were detected by using

appropriate metrics like Cohesion metrics (LSCC, TCC,

SCOM, CC), Coupling metrics (RFC, DCC, DAC, COF) and

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 03 | Mar-2014, Available @ http://www.ijret.org 280

other metrics like (DIS, NOM, DAM, DSC). The metrics

which included in the metrics suite is QMOOD, MOOD.

Table -1: Evaluated Code Smells

CODE SMELLS RISK TYPE

Duplicated code High

Long Method High

Large Class High

Long Parameter List High

4.1 A Evaluated Code Smell

We focused four kinds of code smells at an initial stage. The

evaluated code smells are listed in the Table 1. A short

explanation of these code smells is obtainable here so that the

paper can be understood on its own. We evaluate the

relationship between these code smells and form the resolution

sequence and we also recommend this resolution for

commonly occurring code smells.

 Duplicated Code: The same code appears more than one

location in a program is considered as a duplicated code.

 Long Method: The method which is harder to read or

modify is consider as a long method. As a result long or

complex method should be divided in to easy and well-

named methods associates with the refactoring rules.

 Large Class: Large class consists of too many functions

and tasks, which it making complex and confuse. To

improve the understandability, the large class should be

divided and assigns responsibilities in to simple ones.

 Long Parameter List: In programs, the methods which

contain too many parameters are difficult to use and also

difficult to alter. The parameters can be reduced by using

simple objects.

5. RESOLUTION SEQUENCE OF CODE SMELLS

In this section, the recommended resolution sequence (Figure

2) is formed for the evaluated code smell. The directed graph

is drawn based on the priority of the code smell and

topological sorting algorithm is used to find the optimal

sequence for the evaluated code smells. The topological

sorting algorithm is desirable at the time of two or more

vertices are available by using this algorithm randomly picks

up the values which doesn’t affect the original behavior of the

system.

Fig -2: Resolution Sequence of Code Smell

6. MULTI STEP REFACTORING

The software refactoring is usually carried out in two ways.

The First is refactoring in small step, in this method the

refactoring is done with small size (scope for local files) and

the second is refactoring is done systematically which attempt

to refactor the whole system at an instance. In this paper we

propose the multi step software refactoring.

We extract the original source code in to design level is

presented in figure 3; it proposes new design model for the

source code and explores the design. This design level

improves software refactoring by initiates the multi step

refactoring. The refactoring steps are: model evaluation,

extract design, preferred design and refactoring. This multi-

step software refactoring is resultant from the automated

search based refactoring and it overcomes the problem in fully

automated approach were by using an automated JDEv a tool

in an Eclipse integrated environment.

Fig -3: Multi Step Software Refactoring

The terms which we used in the multi step software

refactoring is described for better understanding the concepts.

Original source code consists of smells that is to be refactored

Preferred Design

Preferred Design

Preferred Design

Model Evaluation Original Source Code

Refactoring

Extract Design

Refactored Code

Duplicated code

 Long Method

Large Class

Long Parameter

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 03 | Mar-2014, Available @ http://www.ijret.org 281

and the model evaluation step the model should be evaluated

from the original source code. This model established

according to the UML meta-model. Extract Design: The

design extracted from the model evaluation, the design level

may changes according to the change in the evaluation of the

model.

The preferred design based on the UML model based on the

original source code by explores a new design but updating

the information based on the programmer needs. Refactoring:

In this process the multi step refactoring is categorized in to

detected and source level refactoring. The detected refactoring

focus on design-level occurrences The source level refactoring

proposes the refactoring directly on source code. Refactored

Code: The refactoring is a process to clean up code smells in

the original source code and getting the refactored code.

7. RESULTS AND DISCUSSION

Software refactoring can be carried out in multi-step

automated refactoring approach and the results are presented

in Table 2. Refactoring is carried out in Combinational

Optimization for Design Improvement which supports Java 6

and several search types, it includes Java Source Metric to

measure the metrics of Java source code. It is an Eclipse plug-

in, detailed information of the simulation are presented and

compared in Figure 4. From the figure, we observe that multi-

step software refactoring approach has better results when

compared to semi automated refactoring. Carrying out

evaluation on these applications may help simplify the

conclusions.

Fig -4: Automation levels for refactoring tools

The multi-step software refactoring shows the results of

automated refactoring and the semi automated refactoring has

taken undefined time to perform refactoring on detected code

smell. The semi automated approach depends on man power

and their performance but our proposed approach based on

detection and refactoring tools. So, the evaluation results

confirm the better performance on multi-step refactoring.

8. CONCLUSIONS AND FUTURE WORK

The different kinds of code smells are first annoyed and

described the resolution sequence of various kinds of code

smells, then proposes the final resolution sequence for

commonly occurring code smells. Then we also illustrate the

multi-step software refactoring for clean up the code smells

automatically. These results the code smell can be detected

and resolved automatically.

The main goal of our future work in this area is too carried out

the automated refactoring for various kinds of code smells as

we focused only four types. The rest of the remaining code

smells are detected and refactored by using our multi step

software refactoring approach or by using the fully automated

framework code-imp for refactoring.

REFERENCES

[1] Hui Liu and Weizhong, “Schedule of Bad Smell

Detection and Resolution: A New Way to Save

Effort,”IEEE Trans. Software Eng., vol. 38, no. 1, pp.

220-235, Feb. 2012.

[2] Mens and T. Touwe, “A Survey of Software

Refactoring,”IEEE Trans. Software Eng., vol. 30, no. 2,

pp. 126-139, Feb. 2004.

[3] Moghadam and M. ´O Cinn´eide, “Code-Imp: a tool for

automated search-based refactoring,” in Proceeding of

the 4th workshop on Refactoring tools, ser. WRT ’11.

New York, NY, USA: ACM, 2011, pp. 41–44.

[4] F.Tip, A.Kiezun, and D.Baeumer, “Refactoring for

Generalization Using Type Constraints,” Proc. 18th

Ann. Conf. Object- Oriented Programming Systems,

Languages, and Applications, pp. 13- 26, Oct. 2003.

[5] Eclipse Foundation. Eclipse 3.4.2.

http://www.eclipse.org/emft/projects/, 2011.

[6] Burd and J. Bailey, “Evaluating Clone Detection

Tools for Use During Preventative Maintenance,” Proc.

Second IEEE Int’l Workshop Source Code Analysis

and Manipulation, pp. 36-43, Oct. 2002.

[7] Wettel and R. Marinescu, “Archeology of Code

Duplication: Recovering Duplication Chains from

Small Duplication Fragments,” Proc. Seventh Int’l

Symp. Symbolic and Numeric Algorithms for

Scientific Computing, p. 63, 2005.

BIOGRAPHIES

M. Lakshmanan received the M.E degree in

Software Engineering from Anna

University in 2013. He is an assistant

professor in the CSE department at the

Gnanamani College of Engineering. His

current research interests include software

refactoring, design pattern, and software

evolution.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 03 | Mar-2014, Available @ http://www.ijret.org 282

S. Manikandan, P.G Scholar, department of

Computer Science and Engineering at the

Gnanamani College of Engineering He is

particularly interested in software

engineering, testing, object-oriented

technologies and software reuse.

