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Abstract 
The free vibration characteristics of a floating rectangular plate considering the fluid-structure interaction effects between the plate 

and the reservoir are studied. The fluid is assumed to be inviscid, incompressible and the reservoir bottom is assumed to be horizontal 

and rigid. Finite element technique is used to solve this interaction problem. The eigen frequencies of the plate are computed and the 

effects of the flexibility of the plate, depth of the reservoir are investigated. 
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I. INTRODUCTION  

With a growing population and the corresponding demand for 

settlement and need for basic and recreational facilities in land, 

countries with long coastlines, have resorted to land 

reclamation. But, huge cost, impact on coast lines, marine eco 

system and sometimes opposition from neighboring countries, 

reclamation is not feasible all the time. Hence, the concept of 

floating platforms came and has been successfully tried in many 

places. Today floating platforms are used for various purposes 

like exploration platforms, naval base, air strips, rescue bases, 

amusement parks and settlement colonies etc. A lot of research 

has been carried out. The earlier works like that of John [1] 

were based on the motion of rigid plates due to wave action. 

Later investigations were focused on the flexibility of the large 

floating plates. Thus, hydroelastic analysis took centre stage in 

the analysis of mat-like floating structures. Breakthrough works 

by Bishop and Price [2] and Price and Wu [3] led to the full 3-

D hydroelasticity theory, where the Green function method is 

used to model the fluid. The plate is modelled as an elastic thin 

plate with free edges. The fluid is incompressible, inviscid and 

its motion is irrotational so that a velocity potential exists. The 

amplitude of the incident wave and the motions of the VLFS 

are both small and only the vertical motion of the structure is 

considered.  

 

Eigen frequencies of a plate either immersed or in contact with 

a fluid decrease significantly compared to those in vacuum, 

especially for the fundamental one. This is because the 

vibration of the plate is transferred to the fluid causing an 

increase in the kinetic energy of the surrounding fluid. Though 

exact solution for this type of interaction problem is difficult to 

obtain, there are many analytical approaches for plates of 

different shapes with some rational boundary conditions and 

approximations of the fluid domain. In the early phase of work 

on this area, Lamb (1920) studied the change in natural 

frequencies of a thin clamped circular plate in an aperture of an 

infinitely long plane rigid wall in contact with water. Later, 

Powell and Roberts (1923) [4]experimentally verified the work 

of Lamb and  Mclachlan (1932)[5] extended Lamb’s work to 

circular plates without any supports. Kwak and Kim (1991) [6] 

and later Kwak (1991) [7] obtained the non-dimensional added 

virtual mass incremental (NAVMI) factors for circular plates 

placed on a free liquid surface using Hankel’s transformation 

for axisymmetric modes and all other modes. All these works 

are based on the assumption that mode shapes of the plate 

remain same both in contact with the fluid and in vacuum. 

Kwak (1996) [8] investigated the effect of water on mode 

shapes and observed that except the fundamental mode, other 

modes are influenced by the presence of water. The distortion 

of mode shapes increases with the increase in mode numbers. 

The plate was considered to be thin and made of isotropic, 

homogeneous and linearly elastic material. Kirchhoff’s theory 

for plate vibration and analytical-Ritz method for fluid-structure 

interaction were adopted for the analysis.  

 

For the solution of interaction problems, though analytical 

methods provide better accuracy, their use is limited to either 

very special or simple cases because of the mathematical 

complexities involved. However, due to the availability of high 

speed computational facilities, several numerical techniques 

may be adopted to obtain a meaningful solution of such 

complex problems. Among different numerical techniques used, 

finite element method (FEM) is mostly preferred due to its easy 

implementation in a wide range of problems.  

 

The focus of the present work is to investigate the effect of the 

flexibility of the plate and fluid depth on eigen frequencies of 

the plate floating over the fluid. 
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2. APPLICATION OF RECTANGULAR PLATE AS 

VLFS 

There are basically two types of very large floating structures 

(VLFSs), namely the semisubmersible- type and the pontoon-

type. Semi-submersible type floating structures are raised above 

the sea level using column tubes or ballast structural elements 

to minimize the effects of waves while maintaining a constant 

buoyancy force. Thus they can reduce the wave induced 

motions and are therefore suitably deployed in high seas with 

large waves. Floating oil drilling platforms used for drilling for 

and production of oil and gas are typical examples of semi-

submersible-type VLFSs. When these semi-submersibles are 

attached to the seabed, using vertical tethers with high 

pretension as provided by additional buoyancy of the structure, 

they are referred to as tension-leg platforms. In contrast, 

pontoon-type floating structures lie on the sea level like a giant 

plate floating on water. Pontoon-type floating structures are 

suitable for use in only calm waters, often inside a cove or a 

lagoon and near the shoreline. Large pontoon-type floating 

structures have been termed Mega-Floats by Japanese 

engineers. As a general rule of thumb, Mega-Floats are floating 

structures with at least one of its length dimensions greater than 

60 m. Referring to Fig. 1, a Mega-Float system consists of a (a) 

very large pontoon floating structure, (b) mooring facility to 

keep the floating structure in place, (c) an access bridge or 

floating road to get to the floating structure from shore, and (d) 

a breakwater (usually needed if the significant wave height is 

greater than 4 m) for reducing wave forces impacting the 

floating structure. 

 

 
 

Fig-1 Components of Mega-Float System 

 

3.  THE MODEL OF INVESTIGATION 

(RECTANGULAR VLFS) 

A rectangular plate of width 2a and length 2b is floating on a 

reservoir of infinite extent as shown in Fig. 1. The fluid is 

considered to be incompressible and inviscid with small 

amplitude motion. The effect of the static pressure is not 

considered in the analysis. It is assumed that the reservoir floor 

is horizontal and rigid. The plate is uniformly thick and its 

material is homogeneous, isotropic and linearly elastic in 

nature. In the analysis, the 3-D fluid domain is discretized 

considering eight noded brick elements and the plate using four 

noded quadrilateral plate elements. Mindlin’s plate bending 

theory is used to analyze the plate.  

 

 
 

Fig-2 Pontoon type of VLFS under wave action 

 

The fluid-structure system and the coordinate system are shown 

in Fig. 2. The origin of thecoordinate system is on the 

undisturbed free surface. The z -axis is pointing upwards, 

andthe sea-bed is assumed to be flat at z = - h. The VLFS has a 

maximum length of 2a in the x direction, a maximum width of 

2b in the y -direction, and a draft d in the z -direction. 

Theproblem at hand is to determine the response of the VLFS 

under the action of wave forces. 

 

3.1. Basic Assumptions for Hydroelastic Analysis of 

VLFS 

In a basic hydroelastic analysis of pontoon-type VLFSs, the 

following assumptions are usually made: 

• The VLFS is modeled as an elastic (isotropic/orthotropic) thin 

plate with free edges. 

• The fluid is incompressible, inviscid and its motion is 

irrotational so that a velocity potential exists. 

• The amplitude of the incident wave and the motions of the 

VLFS are both small and only the vertical motion of the 

structure is considered (i.e. we constrained the plate from 

moving horizontally in the analysis). 

• There are no gaps between the VLFS and the free fluid 

surface. 

 

The analysis may be carried out in the frequency domain or in 

the time domain. Most hydroelastic analyses are carried out in 

the frequency-domain, being the simpler of the two. However, 

for transient responses and for nonlinear equations of motion 

due to the effects of a mooring system or nonlinear wave (as in 

a severe wave condition), it is necessary to perform the analysis 

in the time-domain. Below, we present the governing equations, 

boundary conditions and briefly describe the commonly used 

methods for the analysis in the frequency-domain and in the 

time-domain. 
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4. GOVERNING EQUATIONS FOR THE PLATE 

STRUCTURE 

The un-damped free vibration of the gate structure is given as  

 

       0M W K W 

                                        (1) 

 

Where, 
 M

and 
 K

are the mass and stiffness matrices of the 

gate. 
W   and

W 
 


are the nodal displacement and 

acceleration vectors. In Mindlin’s plate theory where shear 

deformations are taken into account, the nodal displacement is 

represented as  

 

z x yW W , ,                                                              (2) 

 

zW
is the transverse deflection along Z direction and x y, 

are 

the rotations about Y and Z axes. The element stiffness matrix 

 ek
 is split into flexure and shear parts to avoid shear locking. 

The corresponding split matrices are represented as 

 

 
3

12

T
f f fh

e
A

t
k B D B dA           

                           (3) 

 
T

s s s s
h

e
A

k t B D B dA               
                           (4) 

 

Where, 
  sD & D 

   are the constitutive matrices, 

&f sB B   
     are the strain-displacement matrices for the 

flexure and the shear part respectively. The factor   depends 

on the shape of the cross section of the element and is 5/6 for 

rectangular cross section as considered here.  

 

Governing equation for the fluid domain considering non 

viscous incompressible fluid having irrotational motion is given 

as    

 

∇2P = 0                                                                      (5) 

 

5. BOUNDARY CONDITIONS 

 For the problem under consideration of the floating plate, the 

following boundary conditions are adopted (Fig 2) 

 

1. ( , ,0) 0p x y  on fS , where h  is the height of the 

free  water surface above the reservoir bed. 

2. ( , , ) 0
p

x y h
n


 


on bS , as the reservoir bed is 

horizontal and rigid.  

3. 
𝜕𝑝

𝜕𝑛
 𝑥, 0, 𝑧 = 0,

 𝜕𝑝

𝜕𝑛
 𝑥, 𝑎, 𝑧 = 0,          

𝜕𝑝

𝜕𝑛
 0, 𝑦, 𝑧 =

0,
𝜕𝑝

𝜕𝑛
(𝑏, 𝑦, 𝑧0 = 0 on sS , b  is the width of the fluid 

domain considered for analysis.  

 

6. TIME –DOMAIN ANALYSIS 

The commonly-used approaches for the time-domain analysis 

of VLFS are the direct time integration method [9, 10] and the 

method that uses Fourier transform [11–15]. In the direct time 

integration method, the equations of motion are discretized for 

both the structure and the fluid domain. In the Fourier transform 

method, we first obtain the frequency domain solutions for the 

fluid domain and then Fourier transform the results for 

substitution into the differential equations for elastic motions. 

The equations are then solved directly in the time domain 

analysis by using the finite element method or other suitable 

computational methods. 

 

7. FINITE ELEMENT FORMULATION FOR THE 

FLUID DOMAIN 

The weighted integral form of eqn. 5 over an element is given 

as 

 

 2
e

e

p d


 

                                                              (6) 

 

Where, 


 is the weight function and e
is the elemental 

volume. The pressure at any point inside the element is 

interpolated as 

 

1

n

i i
i

p N p


 
                                                                      (7) 

 

ip
(i = 1, 2,----n) is the nodal value of pressure at node i , iN

 

is the interpolation function corresponding to the node and the 

summation is over all the n  number of nodes. Using the 

Galerkin’s weighted residual method, the ith equation may be 

written as 

 

     2 2 2

1 1 1

2 2 2
0

e

n n n

j j j j j j

j j j

i e

N p N p N p

N d
x y z

  



 
   

    
   
 
 

  


        (8) 



IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

__________________________________________________________________________________________ 

Volume: 03 Issue: 03 | Mar-2014, Available @ http://www.ijret.org                                                                            240 

Since, nodal pressure values are constant, taking them out of 

integration and integrating the rest with integration by parts, 

eqn. 8 may be represented as 

 

 
 

                                        
 

Where, in
is the normal to the surface and e indicates 

integration over the surface only. Eqn. 9 may be expressed for 

the whole domain in matrix form as  

 

    G p Q
                                                           (10) 

 

 
           

e

T T T

e

N N N N N N
G d

x x y y z z


      
    
      
 

 
(11) 

 

   
e

T

e

S

p
Q N d

n



 




                                               (12) 

 

   nNNNN  ,, 21                                         (13) 

 

 Q
may be separated into different parts for different 

boundaries. 

 

         f fs b sQ Q Q Q Q   
          (14) 

 

At the free surface  
  0fQ 

 

 

At the fluid structure interface 

 

   fs f fsQ R a                                         (15) 

 

   
fs e

T

fs e

S

R N N d


     
                                     (16) 

 

At reservoir bottom surface 

 

  0bQ 
                                                                        (17) 

 

On either side of the plate, the assumed boundary condition 

leads to  

 

  0sQ
                                                                       (18) 

 

Combining all these 

 

    f fsG p R a                                                (19) 

 

8. COUPLED MOTION OF THE PLATE AND THE 

FLUID DOMAIN 

The boundary motion is prescribed by the movement of the 

plate. Replacing the acceleration 
 a

in eqn. 15 with the nodal 

acceleration of the gate 

 

  fs eQ S w 
                                                           (20) 

 

Where 

 

   
fs e

T

f e

S

S N N d


   
                               (21) 

 

 N
is the interpolation function for pressure in the fluid 

domain and 
N   is the interpolation function for nodal 

displacement of the plate. When the effect of dynamic pressure 

on the plate structure is considered, eqn 1 may be rewritten as 

 

       sM W K W f 

                                    (22) 

 

  Where, 
 sf

 is the forcing term due to pressure from the fluid 

at the interface. 

 

     
1T T

s

f

f N pd S p




     
           (23) 

 

As 
  pNp

 

 

Now, two coupled equations are obtained as 

 

       G P Q S W  

                                       (24) 
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           
1

0
T

f

M W K W S P


  

        (25) 

 

      1
P G S W


 

                                                (26) 

 

So, eqn. 26 may be represented as  

 

      0M W K W    


                                    (27) 

 

where,  

 

         SGSMM
T

f

11 



              (28) 

 

The eigenfrequencies are evaluated from eqn. 28 using Jacobi’s 

method. The non dimensional frequencies are represented as 

 

2 2 4 /p h pt a D  
                                            (29) 

 

Table-1: Eigenfrequencies of a plate of 1.0 m x 1.0 m x 0.02 m 

floating over water of depth 1.0 m 

 

Non 

dimensional 

frequency 

1  2
 3

 4
 5

 

In vacuum 3.70 9.12 24.60 28.83 35.86 

On floating 

condition 

3.65 7.04 16.95 20.65 26.46 

 

 
 

Fig-3 Non Dimensional Frequency 

 

 

 

Table-2: Eigenfrequencies of a plate of 1.0 m x 1.0 m for 

different thicknesses floating over water of depth 1.0 m 

 

b/th 
1  2

 3
 4

 5
 

0.01 3.57 5.95 14.13 16.96 21.99 

0.02 3.65 7.04 16.95 20.65 26.46 

0.04 3.67 7.77 19.05 23.55 29.34 

0.06 3.67 7.93 19.71 24.50 29.56 

0.08 3.65 7.90 19.77 24.68 28.82 

0.10 3.60 7.78 19.49 24.46 28.82 

 

 
 

Fig-4 Eigenfrequencies for Different Thickness 

 

Table-3: Eigenfrequencies of a plate of 1.0 m x 1.0 m x 0.02m 

floating over water for different depth of the fluid 

 

Depth of 

fluid 

In metre 

1  2
 3

 4
 5

 

1.0 3.65 7.04 16.95 20.65 26.46 

1.5 1.75 4.44 10.04 16.79 20.24 

2.0 0.99 3.05 5.89 11.67 15.44 

2.5 0.62 2.28 3.76 8.47 10.386 

3.0 0.44 1.77 2.77 6.30 8.02 

 

 
 

Fig-5 Eigenfrequencies for Different Depth 
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9. RESULTS AND DISCUSSION & CONCLUSIONS 

The changes in eigenfrequencies due to the presence of the fluid 

is studied both for the flexibility of the plate and for the depth 

of the fluid. As shown in Figure-3, the eigenfrequencies 

decrease because of the presence of the fluid. The effect of the 

flexural rigidity of the plate is investigated by observing the 

reduction for different thicknesses of the plate. As observed 

from Figure-4, reduction of the eigenfrequencies increases with 

increase in flexibility of the plate.  Depth of the fluid domain 

plays an important role with eigenfrequencies decreasing with 

the depth of the fluid as shown in Figure-5. The advanced 

research in this field will definitely will bring a revolution 

regarding the acute land problem and other disaster 

management problem. 
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