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Abstract 
This research work present buckling analysis of line continuum with new matrices of elastic stiffness and geometric stiffness. The 

stiffness matrices were developed using energy variational principle. Two deformable nodes were considered at the centre and at the 

two ends of the continuum which brings the number of deformable node to six. The six term Taylor McLaurin’s shape function was 

substituted into strain energy equation and the result functional was minimized, resulting in a 6 x 6 stiffness matrix used herein. The 

six term shape function is also substituted into the geometric work equation and minimized to obtain 6 x 6 geometric stiffness matrix 

for buckling analysis. The two matrices were employed, as well as traditional 4 x 4 matrices in classical buckling analysis of four line 

continua. The results from the new 6 x 6 matrices of stiffness and geometry were very close to exact results, with average percentage 

difference of 2.33% from exact result. Whereas those from the traditional 4 x 4 matrices and 5 x 5 matrices differed from exact results, 

with average percentage difference of 23.73% and 2.55% respectively. Thus the newly developed 6 x 6 matrices of stiffness and 

geometry are suitable for classical buckling analysis of line continuum. 
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1. INTRODUCTION 

The design of multi-storey building frames requires that a 

structural engineer is familiar with structural instability that 

can occur in such a building. Hence, thorough analysis and 

calculations is required. However, the classical method of 

analysis using the traditional 4 x 4 stiffness matrix system 

tends to find solution that are close to exact solution. 

Unfortunately, as observed by Ibearugbulem et al (2013), the 

traditional 4 x 4 stiffness matrix and its load vector cannot 

classically analyze flexural line continua except using them 

numerically. This difficult in using the traditional classical 

approach is evident in the work of Iyengar (1988), Chopra 

(1995) and Yoo and Lee (2011). The traditional 4 x 4 

numerical method of analysis (more than one element in one 

continuum) becomes a good alternative to the tradition 4 x 4 

classical method. The problem with numerical method is that, 

it is tedious (Melosh, 1963; Long, 1973, 1992, 2009. Cook et 

al, 1989; Huebner et al, 1995; Bath, 1996; Zienkiewicz and 

Taylor, 2000; Ibearugbulem et al, 2013) and frequently give 

results that differ greatly with exact classical results. Hence 

there is need for classical matrix approach that would be less 

cumbersome and at the same time give results that are close to 

exact results. Ibearugbulem et al (2013) developed 5 x 5 

stiffness matrices capable of classically analyzing stability and 

dynamic line continuum, but some of their solutions are not 

yet exact solution. This work present buckling analysis of line 

continuum with new matrices of stiffness and geometry. The 

governing differential equation of line continuum is first 

integrated to obtain a general solution of the continuum that 

has specific number of terms. The general solution obtained is 

used in energy variational principle to get a new and more 

reliable 6 x 6 stiffness matrices for classical buckling analysis 

of line continuum. 

 

2. DIRECT INTEGRATION OF GOVERNING 

EQUATION 

The line continuum governing equation is: 

 

 
 

The solution of the equation (1) is assumed thus: 

 

 
 

Equation (2) can be written as: 
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3. ENERGY VARIATIONAL PRINCIPLE 

From Naschie (1990), strain energy is given as: 

 

 
 

Work performed by in-plane load (stability) 

 

 
 

4. NEW STIFFNESS MATRICES FOR 

CLASSICAL BUCKLING 

The new stiffness matrices for classical buckling of line 

continuum are presented by considering deformable nodes at 

the centre, and ends of line continuum (each node with two 

degrees of freedom to bring the number of deformable nodes 

to six). The forces corresponding to the deformable nodes as 

illustrated in figure 1 are: 

 

 
 

 

 
 

Where [FEA] is Fixed End Action or Forces 

[Nodes] means deformable nodes 

 

 
 

Fig 1: Six – deformable nodal system of 6 x 6 stiffness system 

 

Substituting equation (3) into equations (4) and (5) and 

minimizing them in variational principle results in equations 

(8) and (9) respectively: 

 

 
 

 
 

Where  is the nodal deformation vector expressed in equation 

(10) 

 

 
 

K and Kg are the required new 6 x 6 matrices of stiffness and 

geometry for classical buckling analysis of line continuum as 

shown in equation (11) and (12) respectively. 
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5. CLASSICAL APPLICATION TO STABILITY 

ANALYSIS 

Four line continua with four different boundary conditions 

were analyzed for critical buckling loads using the present 6 x 

6 matrices of stiffness and geometry and the traditional 4 x 4 

stiffness systems. The four different boundary conditions are: 

a. P – R Line Continuum: One end is pinned and the 

other end is on roller. 

b. C – C Line Continuum: Both ends are clamped 

c. C – R Line Continuum: One end is clamped and the 

other end is on roller 

d. C – F Line Continuum: One end is clamped and the 

other end is free 

 

6. RESULTS AND DISCUSSIONS 

The critical buckling load, Pcr were determined from classical 

analysis of:   4 x 4, 5 x 5, and 6 x 6 matrices (stiffness and 

geometry).The comparison of these data with the exact critical 

buckling loads for the four different boundary conditions were 

presented in table 1. It is observed from table 1, that the 

comparison of the data from the conventional 4 x 4 system and 

the exact solution shows that the traditional 4 x 4 differ very 

much from the exact solution, excepts for cantilever (C –F) 

beam. The percentage differences of 48.59% and 21.7831% 

for propped cantilever (C – R) beam and simply supported (P 

– R) beam; and the average percentage difference of 23.72% 

for the 4 x 4 stiffness system is very high to be ignored. It was 

not possible for classical analysis of clamped (C – C) beam 

with the traditional 4 x 4 stiffness system. Also, the 

comparison of the data from the present study and classical 

exact solution shows that the result from this present study are 

very close to exact result. The highest percentage difference of 

6.46% for clamped (C – C) beam was recorded. The average 

percentage difference of 2.33% of the 6 x 6 stiffness matrix 

system from exact result is minimal and quite acceptable The 

data from 5 x 5 matrix system (Ibearugbulem et al, 2013) 

showed better closeness to exact solution than the 4 x 4 

system. However, the data from the present 6 x 6 system are 

better than those of 5 x 5 system. These outcomes implied that 

the result from the present study is more close to exact 

solution than that of Ibearugbulem et al. Hence, the newly 

developed stiffness matrices are suitable for classical buckling 

analysis of line continuum. 

 

 

 

 

Table 1: Critical Buckling Load of the Continuum, Pcr from Classical Analysis 

 

Continua 

Boundary 

Conditions 

Exact 

Result 

(Pcr) 

Result 

From 4x4 

Stiffness 

System 

(Pcr) 

Percentage 

Difference with 

Exact Result 

Result from 

5x5 Stiffness 

System (Pcr) 

Percentage 

Difference 

with Exact 

Result 

Result from 

6x6 Stiffness 

System (Pcr) 

Percentage 

Difference 

with Exact 

Result 

P – R Beam 9.87 12.02 21.78318136 9.88 0.10 9.875 0.050658561 

C – C 

Beam 

39.45 Impossible  -- 42 6.46 42 6.463878327 

C – R 

Beam 

20.19 30 48.5884101 20.92 3.62 20.286 0.475482912 

C – F Beam 2.47 2.49 0.809716599 2.47 0.00 2.47 0.00 

Average % 

Difference 

  23.72710269  2.55  2.330066 

 

Legend:  

P-R   represents Simply supported beam  

C-C  represents Clamped beam 

C-R  represents propped cantilever beam 

C-F  represents cantilever beam 
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