
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 02 | Feb-2014, Available @ http://www.ijret.org 609

PERFORMANCE EVALUATION OF NS2 AND OMNET++

SIMULATORS FOR AODV PROTOCOL IN MANET

Jekishan K. Parmar
1
, Mrudang Mehta

2

1
 M.Tech Student,

2
Associate Professor,Department of Computer Engineering, Dharmsinh Desai University Nadiad, Gujarat,

India

Abstract
In order to observe the behaviour of a protocol in various scenarios, network simulators are used. There are few network

simulators available for usage but which one will provide optimum performance and suitability of network simulator for a

particular scenario is always an important decision. In this paper we analyse behaviour of two different network simulators for a

same MANET routing protocol. The MANET routing protocol that we have selected is popular Ad-hoc on demand Distance

Vector (AODV). In this paper, we analyse the performance of routing protocol by using NS2 simulator and then the same on

INET, which is a simulation framework from OMNeT++. The main purpose behind this work is to understand what role simulator

plays when we try to simulate a particular protocol on desired Simulator. This study of difference in performance of simulator

shows how the underlying architecture of a simulator affects the performance of the simulator. We considered these simulators for

comparison purpose due to the amount of their usage in the industry as well as in education and research area. NS2 is one of the

oldest and most preferred simulators by researchers and industry people while usage of OMNeT++ is also increasing with the

time.

Keywords: MANET, AODV, NS2, OMNeT++, Performance Evaluation.

---***---

 1.INTRODUCTION

Often, the simulation of a new network protocol is preferred

over its evaluation in testbed experiments. The reasons are

manifold, e.g., the increased speed of getting evaluation

results, the reduced hardware demands and thus the reduced

cost, or the flexibility in the scenario definition. As a result,

many network simulators have been developed over the last

decades. Today, ns-2 is most widely used network simulation

tool. Kurkowski et al. [1] found that 44% of the simulations

in their MobiHoc survey used ns-2 as network simulator. Its

development began in 1989 as collaboration between a

number of different researchers and institutions. Meanwhile,

a vast number of models for all kinds of network protocols

have been written for ns-2. At the time of writing this paper,

a popular ns-2 web site [2] lists 59 models for media access,

routing, and transport protocols, as well as various topology

and traffic generators. OMNeT++ is another simulation tool

that is free for academic use [3]. OMNeT++ features a

simple, object oriented design, which leads to good

scalability. It is found that OMNeT++ is particularly well

suited for performance evaluations of large networks. Still,

outside a small community of OMNeT++ enthusiasts few

people seem to know this tool.

If a protocol implementation for NS2 is available in public

domain, it is difficult to write same protocol in OMNeT++

Simulator, since architecture of both simulators differs. This

restricts extension of research work in a different simulator.

So, choosing network simulation tool is an important

decision. Hence, in this paper we try to observe various

issues that arise when a same protocol is implemented in two

different simulators. After getting the results from both the

simulators we compare them and try to understand what

might be the cause of this difference in performance.

2.RELATED WORK

There are several works in literature, which describes

differences in the performance of simulators, but it is really

very difficult to analyse a simulator from all perspectives.

Hence, the approach of every work done so far is based on

the perspective, from which the author has analysed the

differences in the performance of simulator. In [4], authors

have described and analysed wireless network simulators like

Qualnet, NS-2, J-Sim, OMNeT++ and Opnet. The analysis

done of these different simulators are on the basis of their

features like language supported, platform supported, GUI

support, licensed or not, animation support is there or not.

After comparison of various simulators on the basis of their

features given above, authors have suggested that NS-2 and

OMNeT++ should be the best choice when open source

network simulators are considered for research work. The

authors also have suggested that Qualnet satisfies most

features when all commercial network simulation tools are

considered. In [5], importance of selecting a proper

simulator for carrying out research in MANET is described

by simulating a MANET routing protocol in open-source

network simulators like NS-2, NS-3, OMNeT++ and

GloMoSiM. The authors in this work, analyses these

simulators by considering the performance metrics like

computational time taken, CPU utilization, memory usage

and scalability. Hence, in this work, the evaluation is done

from the perspective of hardware requirements of various

simulators. In [6] also various simulators like NS-2, NS-3,

OMNeT++ are analysed along with couple of recently

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 02 | Feb-2014, Available @ http://www.ijret.org 610

developed simulators like SimPy and JiST/SWANS. Here,

the authors have analysed these simulators on the basis of the

factors like, impact of simulation runtime on the network size

and probability of dropping packets. They have also

considered the memory usage as a metric in order to analyse

the memory requirements of various simulators. Large

variations in runtime performance as well as in memory

usage were found when the simulation results were analysed.

After analysing some of the existing works where the

performance comparison of various wireless network

simulators has been done, we found that it would be good if

two simulators which are more predominantly used, are

analysed and compared, especially for their performance in

MANETs. Hence, here we chose to simulate and analyse the

performance of AODV protocol which is a MANET routing

protocol into NS-2 and OMNeT++. The simulation results

and analysis that we have discussed in this study will be

helpful for choosing simulator whenever a research work is

to be carried out for MANET routing.

3.AODV PROTOCOL

Fig-1:.AODV Protocol Working

AODV stands for Ad-hoc On demand Distance Vector

(AODV). In AODV there are four different types of

messages used for route establishment and route

maintenance. Route Requests (RREQs) and Route Replies

(RREPs) are the two message types used in AODV for

establishment of route. When a route to a new destination is

needed, the node uses a broadcast RREQ to find a route to

the destination as shown in figure 1. Here node A is a source

node, wanting to transfer the data to node F which is a

destination node. A route can be determined when the request

reaches either the destination itself or an intermediate node

with a fresh route to the destination. Thus in order to

determine the route to destination RREQ is sent out to every

intermediate node also. This can be seen in figure 1 where

RREQ sent by node A, which is the source node. Every node

receives this RREQ sent by source node A. The route is made

available by unicasting a RREP back to the source of the

RREQ. Since each node receiving the request keeps track of

a route back to the source of the request, the RREP Reply can

be unicast back from the destination to the source, or from

any intermediate node that is able to satisfy the request back

to the source. This can be well understood from figure 1

above, when the destination F receives the RREQ it replies

with RREP and all the intermediate nodes receiving this

RREP, forwards it to the source which had sent the RREQ. In

figure 1, replies by unicasting an RREP to D, which unicasts

it to B, which in turn sends it to A which is the source node

and hence the route is established. It is only possible as all

intermediate are keeping track of incoming RREQ.

There are two other types of messages in AODV for route

maintenance. They are: HELLO and RERR. These two

messages are for maintenance of the network. A HELLO

message is a local advertisement for the continued presence

of the node. Neighbours that are using routes through the

broadcasting node will continue to mark the routes as valid.

If hello messages from a particular node stop coming, the

neighbour can assume that the node has moved away. When

that happens, the neighbour will mark the link to the node as

broken and may trigger a notification to some of its

neighbours telling that the link is broken. On receipt of this

notification, neighbour node broadcasts a RERR message.

RERR message is also broadcast when destination is not

reachable as well as when there are no more active routes for

the nodes to which the packets are destined. After the receipt

of RERR message by each and every node, the routing table

is updated with a broken link on a route i.e. that route is

deleted from the table.

In AODV, each node maintains route table entries with the

destination IP address, destination sequence number, hop

count, next hop ID and lifetime. This information must be

kept even for ephemeral routes, such as those created to

temporarily keep track of reverse paths towards nodes

originating the RREQs.

4.NETWORK SIMULATOR 2

Fig-2:Architecture of NS-2

The above figure 2 shows the architectural view of NS2

simulator. As shown in figure 2, NS2 is composed of TCL,

OTCL, TCLCL, Event Scheduler and Network Component

[7]. TCL stands for Tool Command Language which is used

for creating various simulation scenarios in NS2. OTCL is

Object TCL programming language. In NS2, programs are

written in OTCL as it provides Object-oriented support. In

order to link the simulation scenario script written in TCL and

programs written in C++ there is TCLCL which stands for

TCL Cross Linking. Above all of this there is NS2 simulator

which co-ordinates with models of various network

components and event scheduler implemented in C++. In

order to create a simulation, OTCL is used to link this C++

files to the simulation script written in TCL and simulation

program which is generated with OTCL.

 RREQ RREP

tclcl

otcl

A

B D

C
E

F

G

tcl8.0

Event Scheduler

N
etw

o
rk

C
o

m
p

o
n

en
ts

ns-2

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 02 | Feb-2014, Available @ http://www.ijret.org 611

Fig-3:NS2 Simulation Execution

Figure 3 shows the procedure of executing the simulation in

NS2. First of all we create our simulation script which

contains our simulation scenario and then parameters which

we want to apply. This simulation script is nothing but the

TCL file in which we have mentioned our simulation

parameters like protocol to be used, energy model to be used,

physical layer details, etc. These parameters are modelled in

NS2 using object-oriented extension of C++ that is linked to

current simulation script using OTCL linkage.

The simulation script also mentions the protocols that we are

going to use. In our case we will be giving AODV as a

parameter to routing protocol in the simulation script. The

protocol i.e. AODV in our case will be present as C++ file in

the NS-2 directory. This C++ source file of AODV will be

linked with our simulation script by OTCL linkage.

After the completion of simulation, a trace file is generated

and then to fetch the output from the trace file , an AWK

script may be coded that extracts the required output from that

trace file. Also from this trace file, direct generation of charts

and graphs is possible by XGraph, which is also tool

supported by NS2.

NS2 also provides support for visualization of the network

with the help of NAM, which is a network animator tool.

NAM uses the trace file generated by the simulation carried

out in NS2 and generates an animation based on it.

5.OBJECTIVE MODULAR NETWORK TESTBED

IN C++ (OMNET++)

Fig-4:OMNeT++ Simulation Architecture

OMNeT++ simulation programs possess a modular structure.

The logical architecture is shown on Figure 4. The Model

Component Library consists of the code of compiled simple

and compound modules. Modules are instantiated and the

concrete simulation model is built by the simulation kernel

and class library (Sim) at the beginning of the simulation

execution.

The simulation executes in an environment provided by the

user interface libraries (Envir, Cmdenv and Tkenv) – this

environment defines where input data comes from, where

simulation results go to, what happens to debugging output

arriving from the simulation model, controls the simulation

execution, determines how the simulation model is visualized

and (possibly) animated, etc.

In our case of AODV, we’ll be having AODV implementation

residing in model component library and our NED file will

create a module/sub module where we actually create the

network where we’ll be running the simulation and INI file

will be used to configure this network i.e. to set parameters,

simulation times, etc. The detailed simulation execution

process is shown in figure 5.

Fig-5:OMNeT++ Simulation Execution

In the above figure 5, a complete process that is followed

whenever any simulation is carried out in OMNeT++, is

shown. There are MSG files available in OMNeT++ which

 C++ Sources MSG Files

opp_msgc

*_m.cc/h files

Simulation

Kernel & UI

Libraries

Compiling & Linking

Simulation program NED files omnetpp.ini

Results

 Executing Model

(INET, INETMANET,

Castalia, MiXiM, etc.)

SIM ENVIR

main ()

Model

Component

Library

CMDENV

or TKENV

 OTCL Script

Simulation Prog.

OTCL-TCL Interpreter

with OO Extension (C++)

Simulation
Results

NAM for
animation

Analysis

Trace file

AWK Script

Graph (Xgraph/

Excel)

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 02 | Feb-2014, Available @ http://www.ijret.org 612

contains messages required for any special processing

required for any source files as well as messages about

inclusion of any other header files or source files if required.

Moreover, due to compilation and linking process done in

every simulation, we do not have any manual compilation

process even if we have done modification in existing code

After compiling and linking process is over, the simulation

scenario is generated as per NED file. NED stands for

Network Description. The parameters are assigned as

described in INI file. After this, simulation runs and outputs

the results in scalar and vector format

.

6.PERFORMANCE EVALUATION

Here we evaluate the performance of AODV protocol in both

OMNeT++ and NS2 by keeping identical simulation scenario

.

6.1 Simulation Scenario

Fig-6:Visualization of simulation scenario

In figure 6, we see two objects i.e. channel controller and IP

Configurator, their work is to manage the connections with

hosts in the network. These two objects resides on every

mobile node that exists in the network. We have displayed

them as one single entity just for the sake of clarity of

diagram. Basically the aim behind displaying these two

entities in our simulation is to show the components which

handle termination and establishment of connections when the

nodes move out of the range. This task of channel allotment

and channel access is done by channel controller. In

OMNeT++, there is a Channel Control module described in

its mobility framework [8] in INET, which takes care of this

while in NS2 there is also a link layer module which does this

task but on the base of node positions as described in [2]. The

task for allotting and managing IP addresses in OMNeT++ is

done by an IPv4 Configurator module which rests in mobility

framework but in NS2 there is netIF, network interface which

manages all network related tasks. As given in [2], the

allocation and management of IP addresses in NS2 not

handled by any specific module.

The simulation runs using movement patterns generated for 7

different pause times: 0, 20, 40, 80,120, 160, 200 seconds and

constant speeds of 20s. A pause time of 0 seconds

corresponds to continuous motion, and a pause time of 200

(the length of the simulation) corresponds to no motion.

Constant Bit Rate (CBR) traffic generators used as sources to

run the simulation. The simulation parameters are summarized

in the table below.

Table 1: Simulation Settings
Name of Parameter Value

Dimensions 1500 m X 500 m

Number of Nodes 50

Pause time 0, 20, 40, 80,120, 160, 200 seconds

Mobility Speed 20 m/s

Simulation time 200 s

Type of Traffic CBR

6.2 Performance Metrics

While considering the evaluation of AODV protocol on NS2

and OMNeT++ we chose the following metrics.

Table 2: Performance Metrics

Name Definition

Packet Delivery

Ratio

According to [9], packet delivery ratio is

calculated by dividing the number of

packets received by the destination

through the number of packets originated

by the application layer of the source. It

specifies the packet loss rate, which

limits the maximum throughput of the

network. The better the delivery ratio,

the more complete and correct is the

routing protocol.

Throughput The throughput (messages/second) is the

total number of delivered data packets

divided by the total duration of

simulation time [10]. In this case, the

throughput of each of the routing

protocol in terms of number of messages

delivered per one second is evaluated.

Average End-to-

End Delay

Average End-to-End delay (seconds) is

the average time it takes a data packet to

reach the destination. This metric is

calculated by subtracting ―time at which

first packet was transmitted by source‖

from ―time at which first data packet

arrived to destination‖. This includes all

possible delays caused by buffering

during route discovery latency, queuing

at the interface queue, retransmission

delays at the MAC, propagation and

transfer times. This metric is significant

in understanding the delay introduced by

path discovery.

500m

1500m

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 02 | Feb-2014, Available @ http://www.ijret.org 613

 6.3 Simulation Results

We simulate AODV protocol using NS2 with the parameters

described in Table 1 for our simulation. After configuring we

extract the results from it using AWK script. Following are

the results of our simulation on NS2.

Fig-7: Packet delivery ratio for AODV

In figure 7, packet-delivery ratio for AODV on both the

simulators is plotted. It can be noticed that packet delivery

ratio remains nearly similar at all points for both NS2 and

OMNeT++ but still when we consider the value of packet-

delivery ratio through various pause time values, it is seen that

the lowest value attained by OMNeT++ for packet-delivery

ratio is also much more then NS-2 and so we can say that

even in worst case, OMNeT++ can still outperform NS2.

Fig- 8:Throughput for AODV

In figure 8, results for throughput on both simulators are

plotted and it can be noticed here that OMNeT++ throughput

results are far better than NS2 when we consider the highest

throughput received throughout the simulation. NS2 gives

constant throughput but it is lower than OMNeT++. Hence,

we can say that NS2 is very much stable when throughput is

considered against varying pause times while OMNeT++

gives much higher throughput compared to NS2 but it is

affected more due to variation in pause times.

Fig- 9:End-to-end delay for AODV

In figure 9, end-to-end delay for AODV on both the

simulators is graphed. We can clearly see that OMNeT++

gives constant end-to-end delay throughout all the pause times

and also are lower than NS2 at most at all the variations of

pause times.

Considering all the results we see that OMNeT++ provides

better outputs for all the performance metrics that we have

considered. In every performance metric we find that

OMNeT++ provides highest output for e.g. we can note in

throughput, the highest value achieved by OMNeT++ is

around 18000 kbps while with NS2 we only have the highest

value around 7500 kbps. Similarly in figure 3, the lowest

packet delivery ratio of OMNeT++ is around 90% which is

much greater than 84% of NS2. Same can be noticed with

end-to-end delay also.

6.4 Observations

While carrying out the simulations and analysing the results,

we also viewed the internal structure of OMNeT++ and NS2.

In our study of the internal structure, we carefully analysed

and understood the functioning of their architecture. We also

found out some of the parameters which were processed in a

little different manner in both of these simulators. The

differences that we found out in these simulators during our

study are listed below:

a) Some parameters are not available in the configuration file

but only in the source code. For example, in ns-2, the

maximal contention window CWMax is set in the

configuration file, with a default value of 1023. In

OMNeT++ this parameter is defined as a constant of 255 in

one of the source files. This size of contention window does

have effect on traffic parameters like throughput in the

network [11].

b) Sometimes there is no corresponding parameter in the

other simulator at all. For example, in ns-2,

longRetryLimit=4 is configured as the retry limit for

data packets and shortRetryLimit=7 is configured as

the retry limit for a control packet. In OMNeT, there is only

one RetryLimit=7 for all the packets. Hence, in

OMNeT++ we don’t get any option of setting the different

retry limits for control packets and data packets.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100120140160180200

E
n

d
-t

o
-e

n
d

 d
el

a
y

 (
s)

Pause Time (s)

End-to-

end …

0

5000

10000

15000

20000

0 20 40 60 80 100 120 140 160 180 200

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

Pause time (s)

Throughp

ut on NS2

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 02 | Feb-2014, Available @ http://www.ijret.org 614

c) These simulators use a different modeling approach for the

parameters. For example, ns-2 and OMNeT++ have the

following different modeling approach:

Propagation delay — In ns-2, the delay is a constant defined

in configuration file. In OMNeT++, the delay is a function of

the nodes’ distance. Due to this, the same parameter will

produce different results even if the simulation scenario is

exactly the same in both the simulators.

d) In NS2, memory consumed when we the number of nodes

are increased is much more than in OMNeT++. This happens

in NS2 due to OTcl as it does not carry out the process of

garbage collection [12].

e) The overall documentation of NS2 also seems a bit

fragmented as we don’t see any central access site where

there are all simulators or frameworks that are based on NS2

are located along with their documentation while when we

consider OMNeT++ we do have the documentation of it very

much intact and up-to-date.

Because of these implementation differences, it is impossible

to make identical simulations without modifying the source

code of either module. The latter would be time consuming

and error-prone; and it would further limit the comparability

of the simulation results unless all relevant publications

would use the same modifications.

7.CONCLUSIONS

To this end, we have compared simulations that involved the

MANET Routing module in NS2 and OMNeT++ with INET

framework. Analysing the simulators including their source

code, we have found that differences in the implementation

of the simulators and frameworks do not allow reproducing

the simulation scenarios from another simulator.

Furthermore, we have shown that even for scenarios where

two simulators allow the choice of identical parameters, the

different simulators lead to vastly different results. From our

observations we can say that OMNeT++ is good to work with

parameters in which their value is the point of interest and

not the form (linear, exponential, etc.) that those values

follow when they are plotted. We can also notice from the

results that NS-2 is good when consistency is taken into

consideration while OMNeT++ we have considerable amount

of variation in results.

When the source code of AODV protocol was analysed in

particular, we found that both the simulators had same

version of AODV protocol implemented in it. Hence, we can

say that the difference in the performance of these simulators

is not due to different source codes. It is just due to the

manner in which these simulators carry out the simulation.

As a consequence, we conclude that protocol evaluations

from different simulators are not comparable even when the

authors use the very same simulation scenario and source

code. Based on the experience of study, it can be proposed

that modules, i. e. the implementation of a particular model

or protocol, should be the level of abstraction on which

different model and protocol implementations should be

compared. Also in this study the analysis and evaluation are

done by concentrating on the mobility of network as we have

considered pause time in our simulation, hence, in future the

same study can also be done by varying network simulation

time, bandwidth or by varying mobility pattern.

REFERENCES

[1]S. Kurkowski, T. Camp, and M. Colagrosso. MANET

Simulation Studies: The Incredibles. Mobile Computing and

Communications Review, 9(4):50–61, 2005.

[2]S. McCanne and S. Floyd. ns Network Simulator.

<http://www.isi.edu/nsnam/ns>.

[3]Varga. The OMNeT++ discrete event simulation system.

In Proceedings of the European Simulation Multiconference

(ESM’2001). June 6-9, 2001. Prague, Czech Republic, 2001.

[4]V. Mishra, S. Jangale, Analysis and Comparison of

different wireless network simulators. VESIT, International

Technological Conference-2014 (I-TechCON), Jan. 03 – 04,

2014.

[5]A. R. Khan, S. M. Bilal, M. Othman. A Performance

Comparison of Network Simulators for Wireless Networks.

ICCSCE 2012.

[6]E. Weingartner, H. vom Lehn, K. Wehrle. A performance

comparison of recent network simulators. IEEE International

Conference on Communications, 2009.

[7]M. Karl. A Comparison of the architecture of network

simulators NS-2 and TOSSIM, Seminar, Universität

Stuttgart, 2005.

[8]W. Driytkiewicz, S. Sroka, V. Handziski, A Kopke and H.

Karl A Mobility Framework for OMNeT++,

Telecommunication Networks Group, Technische Universität

Berlin, 2003

[9]Jörg, David Oliver. (2003). Performance Comparison of

MANET Routing Protocols in Different Network Sizes.

Retrieved February 5, 2008, from

<http://www.iam.unibe.ch/~rvs/research/publications/projekt

_david_joerg.pdf>

[10]Al-Maashri, A. and Ould-Khaoua, M. (2006).

Performance analysis of MANET routing protocols in the

presence of self-similar traffic. Proceedings of the 31st IEEE

Conference on Local Computer Networks, 2006, 14-16

November 2006, pages pp. 801-807, Tampa, Florida, USA.

Retrieved February 3, 2008, from

<http://eprints.gla.ac.uk/3545/01/almaashri3545.pdf>

[11]A. Khalaj, N. Yazdani, M. Rahgozar, Effect of the

contention window size on performance and fairness of the

IEEE 802.11 standard. Wireless Pers Communications,

Springer, 2007.

[12]NS- Debugging website

< http://www.isi.edu/nsnam/ns/ns-debugging.html>

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 02 | Feb-2014, Available @ http://www.ijret.org 615

BIOGRAPHIES

Jekishan K. Parmar is a student of M.Tech in

Computer Engineering at Faculty of

Technology, Dharmsinh Desai University,

Nadiad, Gujarat, India. He received his B.E.

in Information Technology from L. D.

College Of Engineering, Ahmedabad in

2012. His research interests include Mobile Computing, Ad

hoc Networks and Wireless Sensor Network.

Mrudang T. Mehta is an Associate Professor

at Department of Computer Engineering,

Faculty of Technology, Dharmsinh Desai

University, Nadiad, Gujarat, India. He

received his M.Tech. in

Information Technology from Indian

Institute of Technology, Roorkee in 2008 and B.E. in

Computer Engineering from DDIT, Nadiad in 2001. His

research interests include Wireless Sensor Network,

Embedded System and Mobile Computing.

