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Abstract 

In this paper the modelling and Design of a Beam on which two Piezoelectric Ceramic  Lead Zirconate Titanate ( PZT)  patches 

are bonded on the top and bottom surface as Sensor/Actuator collocated pair is presented. The work considers the Active 

Vibration Control (AVC) using Proportional Integral Derivative (PID) Controller. The beam is assumed as Euler-Bernoulli beam. 

The two PZT patches are also treated as Euler-Bernoulli beam elements.  The contribution of mass and stiffness of two PZT 

patches in the design of entire structure are also considered. The beam is modelled using three Finite Elements. The patches can 

be bonded near the fixed end, at middle or near the free end of the beam as collocated pair. The design uses first two dominant 

vibratory modes. The effect of PZT sensor/actuator pair is investigated at different locations of beam in vibration control. It can 

be concluded from the work that best result is obtained when the PZT patches are bonded near the fixed end.  

Keywords: Smart Beam, Active Vibration control, Piezoelectric, PID Controller, Finite Element 

 

--------------------------------------------------------------------***---------------------------------------------------------------------- 

1. INTRODUCTION 

Active vibration control is a technique in which the 

vibration of a structure is controlled by applying counter 

force to the structure that is appropriately out of phase but 

equal in amplitude to the original force. As a result two 

opposite forces cancel each other and structure stops 

vibrating. Piezoelectric and Piezoelectric Ceramic materials 

can be used as sensors and actuators. These materials have 

ability to transform mechanical energy to electrical energy 

and vice-versa. A piezoelectric material is a crystal in which 

electricity is produced by pressure (Direct Effect). 

Conversely, a piezoelectric material deforms when it is 

subjected to an electric field (Converse Effect). The 

piezoelectric sensor senses the external disturbances and 

generates voltage due to direct piezoelectric effect while 

piezoelectric actuator produces force due to converse 

piezoelectric effect which can be used as controlling force. 

For generating the appropriate controlling force according to 

the sensed signal controller is needed. Tran Ich Thinh , Le 

Kim Ngoc [1] has developed a Finite Element (FE) model 

based on the First-Order Shear Deformation Theory for the 

static flexural shape and vibration control of a glass 

fiber/polyester composite plate bonded with piezoelectric 

actuator and sensor patches. The piezoelectric mass and 

stiffness are taken into account in the model. The results 

obtained were in good agreement with actual experimental 

result. Aydin Azizi, Laaleh Durali, Farid Parvari Rad, 

Shahin Zareie [2] used PZT elements as sensors and actuator 

to control the vibration of a cantilever beam. They studied 

the effect of different types of controller on vibration 

control. Finite Element Analysis and generalized equation of 

motion has been used in this paper. Premjyoti G.Patil [3] 

provides a mathematical model for the deformation of 

cantilever beam using Finite Element Method. Using the 

mathematical model, the beam deformation is plotted using 

MATLAB. Lucy Edery-Azulay, Haim Abramovich [4] 

described that the active damping is obtained by using an 

actuator and a sensor piezoceramic layer acting in closed-

loop. By transferring the accumulated voltage on the sensor 

layer to the piezoelectric actuator layer, the beam can 

actively damp-out its vibrations. An exact mathematical 

model, based on a first order shear deformation theory 

(FSDT) is developed and described. This model allows the 

investigation of piezo-composite beams with two 

actuation/sensing type mechanisms, extension and shear. 

For obtaining the natural frequency and mode shapes 

expressions were programmed in Maple 9. Effect of 

different piezoelectric materials on damping was also 

studied in this paper. Using the Euler–Bernoulli Beam 

Theory R. Ly, M. Rguiti, S. D‟Astorg, A. Hajjaji, C. 

Courtois, and A. Leriche [5] developed a model of 

piezoelectric cantilever beam. The equations of motion for 

the global system were established using Hamilton‟s 

principle and solved using the modal decomposition method 

which described dynamic behaviour of the beam for energy 

harvesting. Then the model was implemented using 

MATLAB software and will be able to integrate with the 

circuit model for energy storage. The results obtained show 

a good agreement with the experiments and other previous 

works. Magdalene Marinaki, Yannis Marinakis, Georgios E. 

Stavroulakis [6] focused on the design of a vibration control 

mechanism for a beam embedded with piezoelectric sensors 
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and actuators. The modelling of the piezoelectric sensors 

and actuators are based on the piezoelectric constitutive 

equations and classical equations of motion using finite 

element analysis. One nature- inspired intelligence method, 

the Particle Swarm Optimization (PSO) which is a 

population based swarm intelligence algorithm is used for 

the vibration control of the beam. Three different variants of 

the Particle Swarm Optimization were tested, namely, the 

simple Particle Swarm Optimization, the inertia Particle 

Swarm Optimization and the Constriction Particle Swarm 

Optimization. The same problem has been solved with two 

other optimization algorithms, namely a Genetic Algorithm 

and a Differential Evolution and the results are compared. 

Result shows that sufficient vibration suppression can be 

achieved by means of PSO method. K Ramesh Kumar and S 

Narayanan [7] used a finite element method based on Euler–

Bernoulli beam theory. Linear quadratic regulator (LQR) 

controller is used for controlling. The LQR performance is 

taken as the objective for finding the optimal location of 

sensor–actuator pairs. The problem is formulated as a multi-

input multi-output (MIMO) model control problem. The 

discrete optimal sensor and actuator location problem is 

formulated in the framework of an optimization problem 

which is solved using genetic algorithms (GAs). The study 

of the optimal location of actuators and sensors is carried 

out for different boundary conditions of beams like 

cantilever, simply supported and clamped boundary 

conditions. Jingjun Zhang, Lili He, Ercheng Wang, Ruizhen 

Gao [8] takes a cantilever beam bonded with rectangular 

shaped piezoelectric sensors and actuators. Two active 

vibration control methods such as Linear Quadratic Gauss 

(LQG) optimal control and robust H control are 

investigated. The paper demonstrates that compared with the 

LQG control method, H control has strong robustness to 

modal parameters variation and has a good closed-loop 

dynamic performance. C.M.A. Vasques, J. Dias Rodrigues 

[9] used an analysis and comparison of the classical control 

strategies, constant amplitude and constant gain velocity 

feedback (CAVF and CGVF), and optimal control 

strategies, linear quadratic regulator (LQR) and linear 

quadratic Gaussian (LQG) controller in order to investigate 

their effectiveness to suppress vibrations in beams with 

piezoelectric patches acting as sensors or actuators. In the 

paper a three-layered smart beam with two piezoelectric 

surface layers were modelled. The transverse displacement 

time history, at the free end is evaluated with the open- and 

closed-loop classical and optimal control systems. The case 

studies allow the comparison of their performances 

demonstrating their advantages and disadvantages. T.C 

Manjunath and B Bandyopadhyay. [10] used multirate 

output feedback based discrete sliding mode control for 

SISO systems in vibration control of Timoshenko smart 

structure. The beam structure is divided in four Finite 

Elements. The beam structure is modelled in the State Space 

form using the concept of piezoelectric theory. The 

performance of structure is investigated for first two 

dominant vibratory modes as well as higher modes. The 

effect of placing the piezoelectric collocated pair is 

investigated at various locations on the beam. Michele Betti, 

Georgios E. Stavroulakis and Charalambos C. 

Baniotopoulos [11] used an active vibration control 

technique for a smart beam. The structure is made of two 

layers of piezoelectric material (PZT8) embedded on the 

surface of an aluminium beam. Piezoelectric sensors and 

actuators are perfectly bonded on the host elastic structure. 

A Finite Element model for a composite smart beam was 

developed. The integration of control actions is done within 

the ANSYS. The ANSYS Parametric Design Language 

(APDL) is used in order to develop a closed loop feedback 

control law. The control law can be calculated from a 

classical control theory, e.g. a linear feedback and LQR, 

which is used in this paper. By taking into account the 

modal shape of the beam, it is possible to suggest the 

optimal position for piezoelectric patches. 

                       Most of the present researchers have used 

Finite element Analysis with different control laws to 

suppress the vibration of a Piezoelectric Smart Structure. 

The objective of this work is to design and analyse 

Piezoelectric Smart Beam with commonly used control 

method, The Proportional Integral Derivative (PID) when 

Piezoelectric Sensor/Actuator pair is placed at different 

locations on the beam. The paper is organized in three parts 

i.e. FE formulation of Smart beam, Controller Design, and 

Results.  

 

2. MODELLING OF THE SMART CANTILEVER 

BEAM 

Consider an Aluminium Cantilever beam bonded with 

collocated Piezoelectric Sensor/Actuator pair. Properties of 

beam and PZT patches (Actuator and Sensor) are given in 

Table-1. An external disturbing force FDist is acting at the 

free end. FActu is the force generated by the Actuator. Fig- 1, 

2 and 3 shows three positions of the PZT Sensor/Actuator 

pair. The beam is divided in 3 Finite Elements. The beam 

may be divided in more than 3 Finite Elements (say 4, 5, 6 

etc.). The more Finite Elements we take the more accurate 

results we get. The beam is considered as Euler-Bernoulli 

Beam and PZT patches are also considered as Euler-

Bernoulli beam elements. We first start with the modelling 

of regular beam element and then modelling of the Smart 

beam element i.e. element having Piezoelectric 

Sensor/Actuator pair also. Finally all the elements are 

assembled using FE analysis. In modelling and analysis the 

following assumptions are taken:- 

 The beam, sensor and actuator are taken as Euler-

Bernoulli beam elements i.e. effect of transverse 

shear forces is neglected. 

 Sensor and actuator layers are thin compared with 

the beam thickness. 

 Cross- sections of beam, sensor and actuator 

remain plane and normal to the deformed 

longitudinal axis before and also after bending. 

 Neutral axis of beam, sensor and actuator passes 

through the centroid. 
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 The polarization direction of the Sensor and 

actuator layers is in the thickness direction ( z- 

axis) 

 The electric field loading of the Sensor and actuator 

layers is uniform uniaxial in the x-direction as 

shown in Figures :-1,2 and 3 

 The piezoelectric material is homogeneous, 

transverse isotropic and elastic.  

 Adhesive used in bonding the Sensor/Actuator does 

not contribute in mass and stiffness of Smart beam 

element. 

 

In the present study suffix „b‟ is used for regular beam 

element, suffix „p‟ is used for PZT patch element, suffix „a‟ 

is used for Actuator and suffix „s‟ is used for Sensor. Ab and 

Ap  are cross sectional areas of regular beam and PZT patch 

elements respectively. Ib and Ip are moment of Inertias of 

regular beam and PZT patch elements respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PARAMETERS CANTILEVER 

ALUMINUM 

BEAM 

PIEZOELECTRIC 

SENSOR/ 

ACTUATOR 

Length lb= 0.3 m lp=la=ls=0.1 m 

Width bb=0.03 m bp= ba = bs = 0.03 m 

Thickness tb= 0.003 m tp= ta = ts = 0.6×10
-3

 

m 

Young‟s Modulus 

of Elasticity 

Eb= 6.9×10
10 

N/m
2
 

Ep=Ea=Es= 6.66×10
10 

N/m
2 

Density b= 2700 kg/m
3 

p=a =s= 7400 

kg/m
3 

Piezoelectric          

( PZT-5H ) Stress 

Constant 

 g31=8.5×10
-3

 Vm/N 

Piezoelectric           

( PZT-5H ) Strain 

Constant (d31) 

 

 

d31= 265×10
-12 

C/N 

Damping 

Constants used  

α= 0.001 and 

β=0.0001 

 

Table- 1:  GEOMETRIC AND MATERIAL PROPERTIES 

OF BEAM AND PZT PATCHES 

 

 

Fig:-1 Sensor/Actuator placed near Fixed  

End of the Beam 

Fig:-3 Sensor/Actuator placed at Free End of 

the Beam 

Fig:-2 Sensor/Actuator placed at Middle of 

the Beam 
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A two nodes Finite element of a Smart Beam Element is 

shown in Fig-4  

 

 

 

 

 

 

 

2.1 FE formulation of regular beam element 

A two nodes Finite element of a Regular Beam Element is 

shown in Fig-5 

 

 

 

 

 

 

 

 

 

The node undergoes both translational and rotational 

displacements and they are u1, 1, u2 and 2. The linear 

forces are f1 and f2 corresponding to linear displacements u1 

and u2 and rotational joint forces i.e. Bending Moments are 

M1 and M2 corresponding to the rotational joint 

displacements 1 and 2 .The Transverse displacement with 

in the element is assumed to be a cubic polynomial as 

2 3

1 2 3 4( , )u x t a a x a x a x                                          (1) 

Substituting the boundary conditions the shape functions of 

beam elements can be obtained as 

 1 2 3 4

2 3 2 3 2 3 2 3

2 3 2 2 3 2

{ ( )} ( ) ( ) ( ) ( )

3 2 2 3 2
1

T

b bb b b b b b

N x N x N x N x N x

x x x x x x x x
x

l ll l l l l l

 

 
      

 

   (2)                                                                                                                                                                           

The nodal displacement function can be written as  

   1 1 2 2

T
q u u                                               (3) 

The Lagrange‟s Equations gives the Kinetic Energy and 

Potential energy of the system respectively as : 

   

   

1
[ ]

2

1
[ ]

2

T

T

T q m q

U q k q





 

                                                              (4) 

Using Lagrange‟s Equation the Element Stiffness Matrix 

and Mass Matrix of a beam element are computed that can 

be found in Text Books of Vibration [14], [15] and written 

as   

 

2 2

3

2 2

12 6 12 6

6 4 6 2
[ ]

12 6 12 6

6 2 6 4

b b

b b b bb b
b

b bb

b b b b

l l

l l l lE I
k

l ll

l l l l

 
 


 
   
 

 

                              (5) 

2 2

2 2

156 22 54 13

22 4 13 3
[ ]

54 13 156 22420

13 3 22 4

b b

b b b bb b b
b

b b

b b b b

l l

l l l lA l
m

l l

l l l l



 
 


 
 
 
   

                   (6) 

The First, Second spatial derivatives of shape functions are 

denoted as under that will be used in deriving the Sensor and 

Actuator results. 

   

   

'

1

2
''

2 2

( )
( ) ( )    and   

( )
 ( ) ( )      

dN x
n x N x

dx

d N x
n x N x

dx

 
  
 

 
  
 

                                (7) 

2.2 FE formulation of smart beam element 

When PZT patches are assumed as Euler-Bernoulli beam 

elements the Elemental mass and stiffness matrices of PZT 

beam element can be computed in similar fashion as: 

2 2

3

2 2

12 6 12 6

6 4 6 2
[ ]

12 6 12 6

6 2 6 4

p p

p p p pp p

p

p pp

p p p p

l l

l l l lE I
k

l ll

l l l l

 
 


 
   
 

  

                            (8) 

2 2

2 2

156 22 54 13

22 4 13 3
[ ]

54 13 156 22420

13 3 22 4

p p

p p p pp p p

p

p p

p p p p

l l

l l l lA l
m

l l

l l l l



 
 


 
 
 
    

                

(9) 

The smart beam element is obtained by sandwiching the 

regular beam element in between the two PZT patches as 

shown in Fig.:-6  

 

 

 

 

 

 Fig-6 :A two nodes Finite element of a Smart Beam Element 

Fig-4 :   A two nodes Finite element of a Smart Beam 

Element 

Fig-5 :A two nodes Finite element of a Regular Beam Element 
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In which 2b b p pEI E I E I   is the Flexural rigidity and 

( 2 )b b b p pA b t t    is the mass per unit length of smart 

beam element, tP is the thickness of PZT patches i.e. 

thickness of Actuator and Sensor. So the Elemental mass 

and stiffness matrices of Smart beam element are 

2 2

3

2 2

12 6 12 6

6 4 6 2
[ ]

12 6 12 6

6 2 6 4

p p

p p p p

p pp

p p p p

l l

l l l lEI
k

l ll

l l l l

 
 


 
   
 

                                  

(10) 

2 2

2 2

156 22 54 13

22 4 13 3
[ ]

54 13 156 22420

13 3 22 4

p p

p p p pp

p p

p p p p

l l

l l l lAl
m

l l

l l l l



 
 


 
 
 
                         

(11) 

3. SENSOR EQUATION 

Following Linear Piezoelectric Constitutive equations 

[6],[13] will be used for deriving the Sensor and Actuator 

equations. 

  
11 31

31 33

 

D = +

E

x x z

z x z

S d E

d E

 

 

 
                                                       (12) 

Where  is Strain,  is Stress, S
E 

is Compliance when 

electric field is constant,  d31  is Piezoelectric Constant      

(Coulomb/N or m/V), E is Electric field (Volt/m), D is 

Electric displacement i.e. charge per unit area  

(Coulomb/m
2
), 


 is Dielectric constant ( Permittivity) under 

constant stress. The direct piezoelectric effect is used to 

calculate the output charge on the sensor layer created by 

the strains in the beam. Since no electric field is applied to 

the sensor layer, we get 

11 31z xD C d                                                                     (13) 

Where C11 is the Young‟s modulus of elasticity (Inverse of 

compliance). 

The charge measured through the electrodes of the sensor is 

given by 

( ) z

S

q t D ds                                                                     (14) 

The current on the surface of the sensor is given by 

( )
( )

dq t
i t

dt
                                                                        (15) 

From the Text books of Mechanics of Solids we know that 

strain at a point in a beam is given as 
2 2

xε =z d u/dx , where z 

is a coordinate on the beam w.r.t. neutral axis. Width 

bb=bs=ba. As such current generated can be written as [10] 

 11 31 2
0

( ) ( ) { }
p

Tl

bi t zC d b n x q dx  
                                     

(16) 

Where z= tb/2+ts  for maximum strain.  

Voltage generated by the sensor is  

( ) ( )S

SV t G i t                                                                   (17) 

Where GS is the gain of the signal conditioning device 

11 31 1 1 2 2( ) [0 1 0 1]
T

s

s bV t G C d zb u u     
  

     
(18) 

This can be written as  

( ) [0 1 0 1]{ }s

sV t C q                                               (19) 

Where Cs =GsC11d31zbb is Sensor Constant. The above 

equation can be written as  

 ( ) { }
TsV t g q                                                                 (20) 

Where {g} is a Constant Vector of size (4×1) 

4. ACTUATOR EQUATION 

From equation 12 the stress developed in the Actuator is  

11 31x zC d E                                                                      (21) 

Where Ez is the Electric Field. 

The resultant bending moment produced by the actuator is 

given by [10] 

11 31 ( )
2

aa b
a

t t
M C d V t

 
  

 
                                              (22) 

Where V
a
(t) is the voltage applied on the actuator which is 

given by 

( )    ( )a SV t Controller gain V t                                      (23)    

The force produced by the Actuator is given by      

   11 31 1( ) ( )  
2

a

aa b
Actu b

l

t t
F C d b V t n x dx

 
  

 
                  (24)  

This can also be expressed as    

    ( )a

ActuF H V t                                                            (25) 

Where {H} is a constant vector of size (4×1) and is given as  

   

   

11 31 1 0 1 0
2

or

1 0 1 0

T a b
b

T

a

t t
H C d b

H C

 
  

 

 

                          (26) 

Where Ca is the Actuator Constant and is given by 

11 31
2

a b
a b

t t
C C d b

 
  

 
                                                     (27) 

5. CONTROL LAW USING PID CONTROLLER 

Next goal is to achieve an appropriate controlled voltage 

that can be fed to the Actuator, for that a PID controller is 
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used in the present study. A typical PID control law that can 

be used for Active Vibration Control is: 

( ) ( ) ( )p i dy t K K e t dt K e t                                            (28) 

Where y (t) is control signal, Kp, Ki and Kd are Proportional, 

Integral and Derivatives gains respectively and e(t) and e(t)  

are error signal and its derivative respectively. These three 

gains can be tuned in order to provide fine control for the 

application. For fine tuning of the controller the following 

gain values are taken into consideration KP=100, Kd =10 & 

Ki=50.  

A typical PID controller is shown in Fig.- 7 

 

 

 

 

 

 

 

 

 

 

6. DYNAMIC EQUATION OF SMART STRUCTURE 

Next step is to formulate and solve the Equation of motion 

of entire structure that is given by  

         Dist ActuM q K q F F                                     (29) 

Consider a generalized coordinate using a transformation  

    q x for the first two dominant vibratory modes 

then equation of motion becomes  

       r r r r

Dist ActuM x K x F F                                     (30) 

If damping of the structure is also considered then assuming 

proportional damping as  

     C M K                                                            (31) 

The generalized dynamic equation of motion is given as  

         r r r r r

Dist ActuM x C x K x F F                         (32) 

7. STATE SPACE FORMULATION FOR THE FIRST 

TWO DOMINANT VIBRATION MODES 

Let the {x}={y} as 

   1 1

2 2

x y
x y

x y

   
     
   

                                                   (33) 

And  

       1 3 3

2 4 4

 and 
y y y

x y x y
y y y

     
         

     

 
   

 
               (34) 

 Equation of motion now can be written as 

   

3 3 1

4 4 2

r r r

r r

Dist Actu

y y y
M C K

y y y

F F

     
                

     

 





                                

(35) 

This can be simplified as  

   

1 13 1 3

4 2 4

1 1

r r r r

r r r r

Dist Actu

y y y
M K M C

y y y

M F M F

 

 

     
                     

     

       



              (36) 

The above equation can be written in State form as 

   

 

   

 

   

1 1

2 2
1 1

3 3

4 4

1 1

0

0 0
( ) ( )

r r r r

a

T Tr r

y y

Iy y

y yM K M C

y y

V t u t
M H M f 

 

 

   
    
    
                       
   

   
    
            







                    

                                                                                          (37) 

Where u (t) is the magnitude of external force and {f} is the 

unit force vector. The sensor voltage is taken as output of 

the structure which can be written as  

       1 2 3 4( ) 0
TTsV t g y y y y 

 
                   (38) 

So the State Space Model of smart structure for the first two 

dominant vibratory modes is given by 

  

        

     

( ) ( ) ( )

and

( ) ( ) ( )

a

Ts a

y A y t B V t D u t

V t E y t F V t

  

 



                            (39) 

Where  

 
   

 
 

   
 

 

   

 
 

   
 

1 1

1 1

0
,  

0 0
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0
 ,  and            

r r r r

T Tr r
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I
A
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B D
M H M f

E F Null Matrix
g

 



 

 

 
 

                 

   
    
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   (40) 

 

Fig-7  :A Typical PID Controller 
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8. RESULTS 

The beam is divided in the three Finite elements. Time 

response of the structure is studied after bonding the 

Sensor/actuator pair at different locations on the beam say 

near the fixed end, at the middle and at the free end. The 

results are shown in Figures- 8,9 and 10 respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

Present study is useful in controlling the vibration of modern 

day machines, Engineering structures, Automobiles, 

Gadgets Spacecrafts, Bridges, Marine equipments, Machine 

Tools, Off shore structures, High rise buildings etc. Present 

work deals with Active vibration control of a Cantilever 

Beam bonded with two Piezoelectric patches as collocated 

pair. It is observed that without control, response is 

paramount but after applying control force sufficient 

vibration suppression has been achieved. Results are taken 

after placing the Piezoelectric Actuator/Sensor Pair near 

fixed end, at middle and near free end of the beam. It can be 

concluded from the work that best result is obtained when 

the Piezoelectric patches are bonded near the fixed end. 
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