
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 214

TEMPLATE BASED FRAMEWORK FOR RAPID FAST DEVELOPMENT

OF ENTERPRISE APPLICATIONS

Srinivasa Varma Mantena1, G. P. Saradhi Varma2, Syamala Rao P3
1Chief Technology Officer, ModeFinServer Pvt. Ltd, India

2Director P.G. Courses, S.R.K.R. Engineering College, India
3Associate Professor, Shri Vishnu Engineering College for Women, India

Abstract

High Quality Deliverables in Shortest duration is the key to win any future software business opportunities. Every Software
Organization wants to achieve this but suffers problems like Delayed deliverables, Customer complaints, Poor Quality deliverables,
Poor Turnaround time, Rework, Lack of time for reviews, Maintenance nightmares, resource dependencies, complex technology
frameworks resulting slow learning curve, and challenges dealing with resources. Automation is the key to many of the problems;
however, regular automation cannot address the issues of most commercial or enterprise applications at global level. Needs of every
application is different making automation tough. There are many frameworks and custom standards available setting the
expectations for development team, but considering complexity, it is practically impossible to ensure consistency of implementing the
set expectations considering typical human ignorance tendencies.

Other alternative for Software Organizations is to make use of Specific Tools available from market. Most Automation tools are
expensive and are catered design only specific category of problems. On the other side, Organizations making use of automation tools
from market end up getting into a Vendor Lock for upgrades, maintenance, highly expensive consultant costs and support. This paper
provides a Framework which can significantly address these challenges of Software Organizations. Irrelevant of technology area,
most applications are database driven. Every operation that gets done on UI or through a service will have to be reflected in
database. Considering specific needs of application or organization standards, an initial working flow (UI, Controller, Service, DAO)
will be prepared by an expert for all levels of the framework to be used. Once the working flow is prepared, a template will be
generated based on that. Template will be applied for all tables in database.

Keywords: Automation, Development Framework, Productivity Improvement, Template based development, Server Side

Development

--***--

1. INTRODUCTION

Every Software Organization strives to achieve best quality
product. However, due to cost constraints, many service based
software organizations engage fresh engineers and few senior
resources. Due to lack sufficient skill, lot of resources delivers
poor quality code and to address it organizations engage
additional team members for reviews and testing.

Although reviews and testing helps in closing the gaps to
some extent, it cannot cover entire code base and compromise
will happen after certain extent to meet the deliverable
deadlines. On the other side, it is challenging for Software
Organizations to meet the demands of employees with
potential. As a result, in the name of Cost Saving,
organizations are increasing cost of project either to Customer
or to Software Organization.

The more we add team members the more complex the system
becomes. For every enhancement, defect fix or platform

upgrade, the risk of existing deliverable breakage is significant
high and results in nightmares.

2. PROBLEM SCENARIO

Automation is the solution for many of the challenges being
faced by Software Organizations. However, 100% automation
is not practically possible considering the dynamic nature of
customer requirements and market. The core Business Logic
should be customizable.

There are various configurable solutions available in the
market to reduce development effort and achieving high
quality deliverables.

Spring, Hibernate in Java World are few frameworks which
are meant to achieve this goal. These solutions are adopted by
many Software Organizations. The challenges with these
frameworks are dependency on these libraries and lack of

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 215

control on these libraries in case of any issue. On other side,
these solutions are not easy to learn by Software Engineers.

Popular Integrated Development Environment tools like
Eclipse, NetBeans generates some code automatically but it is
very limited.

Other options that organizations have are, procurement of
Specialized Domain Products which act as platform and on
which customizations can be made. Majority of times, these
products are very expensive and can cause Vendor Lock to the
procuring Organization.

3. PROPOSED FRAMEWORK

All database operations by applications are usually limited to 4
statements - Insert, Update, Select and Delete. Other
operations like Create, Drop etc. are not typically required at
application level. Any Business Application will only do
these 4 operations on database. Heart for any software system
will be the schema of the database.

Generation of Code in an automated way based on Schema for
all layers - Presentation, Controller, Service, Data Access
layer etc. can address majority of issues highlighted. This
approach supports making use of any libraries in between as
required by the organization.

Fig. 1 Flow of Activities for Automated Code Generation

For this approach, DB schema is the input. However big the
database schema is, by making use of Database Meta Data
methodologies, entire DB schema can be read and code can be
generated based on Database Schema. To address join
scenarios among relationships in database schema, Views can
be used. For views, only select options are allowed. Value
Objects are getter, setter methods for each field based on type.
Value Objects can be equipped with print content of Value
Object with names and values for debug facilities and logging.

Once the Value Objects are generated, generation of
associated Data Access Object code for each relationship can
be achieved. Data Access Object code can have as many
variations of select, insert, update, delete operations as
required by the target system. For select statement, various
possible approaches can be fetch record by id, fetch records

matching input query, fetch records marching certain fields
etc.

Fig. 2 Flow of Activities for Automated Code Generation

Service layer acts as common area for all interfaces. Service
layer objects can be generated once DAOs are ready. In the
same manner UI, data loaders from UI can be generated.

Some tables may not require all operations by application.
However, with today's speed of processors, existence of few
extra lines of code will not harm. Support for all operations
can address majority of future requirements by default.

For this solution, the key is to make one relationship work
with all operations. This should be done by a senior resource
that is skilled in the area. From User Interface till Database
Operations all operations should be implemented in full as
required by Customer. The review can be done on this alone.
Once this is made to fully working, convert it as a template.
i.e. replace all Relationship names to
#RELATIONSHIPNAME#, #FIELDNAME#,
#FIELDTYPE# etc. Comments can be added to template.
Once template is ready, using Database Meta data, code for
entire system can be generated.

Comments can be accommodated in the template. Any
operation that is not required on UI, can simply be commented
in separate package. Deletion or commenting of unnecessary
operations is much easier than developing them.

public boolean
insert$RECORDCLASSNAME$($RECORDCLASSNAME$
record) throws Exception {

try {
logger.debug(\"insert$RECORDCLASSNAME$:\" +
record);

String beginMesssage =
logger.generateFunctionBeginTimerMessage(\"insert
$RECORDCLASSNAME$\", null);

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 216

$DAOCLASSNAME$ dao = new
$DAOCLASSNAME$();
boolean result =
dao.insert$RECORDCLASSNAME$(record);
logger.debug(\"insert$RECORDCLASSNAME$:Res
ult:\" + result);
logger.generateFunctionEndTimerMessage(beginMes
ssage);
return result;
} catch(Exception exception) {
logger.error(\"insert$RECORDCLASSNAME$\" +
getStackTrace(exception));
throw exception;
}

}

CONCLUSIONS

This solution is not limited to any technology or area. This can
be applied to all applications during development stage. This
solution is useful for Service Based and Product Based
organizations.

Benefits of the solution include

• No Vendor Lock
• No License issues
• No New technologies to be learn
• Full Control on entire code base
• Supports any library
• Supports all future enhancements
• Technology Independent
• Rapid Fast Development
• Easy Maintenance
• Significant Improvement in turnaround time
• Significant reduction in Resource Dependency
• High Quality Deliverable

This solution can be further extended by making it available
on the web for dynamic generation of code on net. Schema
should be given as input.

RESULT ANALYSIS

Solution proposed has been applied on 3 real time enterprise
applications and results were captured in the graph below.
Amount of Custom code is very less compared to overall size
of project. Auto Generated code is more reliable in quality as
template is prepared by expert resource. Organizations can
pay very close focus to Core Business Logic which
contributed only from 7% - 20% of overall size of project.
Auto Generated code is directly proportional to saving for the
organization.

Fig. 3 Comparison of Automated Vs Custom Code

REFERENCES

[1]. Xuhao Chen, Zhong Zheng, Li Shen and Wei Chen,
"GSM: An Efficient Code Generation Algorithm for Dynamic
Binary Translator", IEEE Conference Publication Dec 2011
[2]. Cheng Wang, Wei-Yu Chen, Youfeng Wu, Saha, "Code
Generation and Optimization for Transactional Memory
Constructs in an Unmanaged Language", IEEE Conference
Publication Mar 2007
[3]. Qing Yi, "Automated Programmable Control and
Parameterization of Compiler Optimizations", Code
Generation and Optimization, 2011 9th Annual IEEE/ACM
International Symposium
[4]. J. Ramanujam, P. Sadayappan, "GPU Programming
Models, Optimizations and Tuning", Code Generation and
Optimization, 2011 9th Annual IEEE/ACM International
Symposium
[5]. Ian Gartley, Marius Pirvu, Vijay Sundaresan, and Nikola
Grcevski, "Experiences in Designing a Robust and Scalable
Interpreter Profiling Framework", IEEE Symposium on Code
Generation and Optimization 2013

