
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 168

USAGE OF REGULAR EXPRESSIONS IN NLP

Gaganpreet Kaur

Computer Science Department, Guru Nanak Dev University, Amritsar, gagansehdev204@gmail.com

Abstract
A usage of regular expressions to search text is well known and understood as a useful technique. Regular Expressions are generic
representations for a string or a collection of strings. Regular expressions (regexps) are one of the most useful tools in computer
science. NLP, as an area of computer science, has greatly benefitted from regexps: they are used in phonology, morphology, text
analysis, information extraction, & speech recognition. This paper helps a reader to give a general review on usage of regular
expressions illustrated with examples from natural language processing. In addition, there is a discussion on different approaches of
regular expression in NLP.

Keywords— Regular Expression, Natural Language Processing, Tokenization, Longest common subsequence alignment,

POS tagging

--***--------------------------- ---

1. INTRODUCTION

Natural language processing is a large and
multidisciplinary field as it contains infinitely many
sentences. NLP began in the 1950s as the
intersection of artificial intelligence and linguistics.
Also there is much ambiguity in natural language.
There are many words which have several meanings,
such as can, bear, fly, orange, and sentences have
meanings different in different contexts. This makes
creation of programs that understands a natural
language, a challenging task [1] [5] [8].

The steps in NLP are [8]:

1. Morphology: Morphology concerns the way words
are built up from smaller meaning bearing units.

2. Syntax: Syntax concerns how words are put together
to form correct sentences and what structural role each
word has.

3. Semantics: Semantics concerns what words mean and
how these meanings combine in sentences to form
sentence meanings.

4. Pragmatics: Pragmatics concerns how sentences are
used in different situations and how use affects the
interpretation of the sentence.

5. Discourse: Discourse concerns how the immediately
preceding sentences affect the interpretation of the
next sentence.

Fig 1: Steps in Natural Language Processing [8]

Figure 1 illustrates the steps or stages that followed
in Natural Language processing in which surface text
that is input is converted into the tokens by using the
parsing or Tokenisation phase and then its syntax
and semantics should be checked.

2. REGULAR EXPRESSION

Regular expressions (regexps) are one of the most useful tools
in computer science. RE is a formal language for specifying the
string. Most commonly called the search expression. NLP, as
an area of computer science, has greatly benefitted from
regexps: they are used in phonology, morphology, text analysis,
information extraction, & speech recognition. Regular
expressions are placed inside the pair of matching. A regular
expression, or RE, describes strings of characters (words or
phrases or any arbitrary text). It's a pattern that matches certain
strings and doesn't match others. A regular expression is a set
of characters that specify a pattern. Regular expressions are

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 169

case-sensitive. Regular Expression performs various functions
in SQL:
REGEXP_LIKE: Determine whether pattern matches
REGEXP_SUBSTR: Determine what string matches the
pattern
REGEXP_INSTR: Determine where the match occurred in the
string
REGEXP_REPLACE: Search and replace a pattern

How can RE be used in NLP?

1) Validate data fields (e.g., dates, email address, URLs,
abbreviations)

2) Filter text (e.g., spam, disallowed web sites)
3) Identify particular strings in a text (e.g., token

boundaries)
4) Convert the output of one processing component into

the format required for a second component [4].

3. RELATED WORK

(A.N. Arslan and Dan, 2006) have proposed the constrained
sequence alignment process. The regular expression
constrained sequence alignment has been introduced for this
purpose. An alignment satisfies the constraint if part of it
matches a given regular expression in each dimension (i.e. in
each sequence aligned). There is a method that rewards the
alignments that include a region matching the given regular
expression. This method does not always guarantee the
satisfaction of the constraint.

(M. Shahbaz, P. McMinn and M. Stevenson, 2012) presented a
novel approach of finding valid values by collating suitable
regular expressions dynamically that validate the format of the
string values, such as an email address. The regular expressions
are found using web searches that are driven by the identifiers
appearing in the program, for example a string parameter called
email Address. The identifier names are processed through
natural language processing techniques to tailor the web queries.
Once a regular expression has been found, a secondary web
search is performed for strings matching the regular expression.

(Xiaofei Wang and Yang Xu, 2013)discussed the
deep packet inspection that become a key
component in network intrusion detection systems,
where every packet in the incoming data stream
needs to be compared with patterns in an attack
database, byte-by-byte, using either string matching
or regular expression matching. Regular expression
matching, despite its flexibility and efficiency in
attack identification, brings significantly high
computation and storage complexities to NIDSes,
making line-rate packet processing a challenging
task. In this paper, authors present stride finite
automata (StriFA), a novel finite automata family, to

accelerate both string matching and regular
expression matching.

4. BASIC RE PATTERNS IN NLP [8]

Here is a discussion of regular expression syntax or
patterns and its meaning in various contexts.

Table 1 Regular expression meaning [8]

Character Regular-expression
meaning

 . Any character, including
whitespace or numeric

 ?

Zero or one of the preceding
character

*

Zero or more of the
preceding character

+

One or more of the
preceding character

^ Negation or complement

In table 1, all the different characters have their own meaning.

Table 2 Regular expression String matching [8]

RE String matched
 /woodchucks/

“interesting links to
woodchucks and lemurs”

 /a/

“Sammy Ali stopped by
Neha’s”

/Ali says,/ “My gift please,” Ali says,”
/book/ “all our pretty books”
/!/ “Leave him behind!” said

Sammy to neha.

Table3 Regular expression matching [8]

RE Match

/[wW]oodchuck/

Woodchuck or woodchuck

/[abc]/ “a”, “b”, or “c”
/[0123456789]/ Any digit

In Table 2 and Table 3, there is a discussion on regular
expression string matching as woodchucks is matched with the
string interesting links to woodchucks and lemurs.

Table 4 Regular expression Description [8]

RE Description

/a*/ Zero or more a’s
/a+/ One or more a’s

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 170

/a? / Zero or one a’s
/cat|dog/ ‘cat’ or ‘dog’

In Table 4, there is a description of various regular
expressions that are used in natural language
processing.

Table 5 Regular expression kleene operators [8]

Pattern Description
Colou?r Optional previous char
oo*h! 0 or more of previous char
o+h! 1 or more of previous char

In Table 5 there is a discussion on three kleene operators with
its meaning.

Regular expression: Kleene *, Kleene +, wildcard
Special charater + (aka Kleene +) specifies one or more
occurrences of the regular expression that comes right before it.
Special character * (aka Kleene *) specifies zero or more
occurrences of the regular expression that comes right before it.
Special character. (Wildcard) specifies any single character.

Regular expression: Anchors
Anchors are special characters that anchor a regular expression
to specific position in the text they are matched against. The
anchors are ^ and $ anchor regular expressions at the beginning
and end of the text, respectively [8].

Regular expression: Disjunction
Disjunction of characters inside a regular expression is done
with the matching square brackets []. All characters inside []
are part of the disjunction.

Regular expression: Negation [^] in disjunction
Carat means negation only when first in [].

5. GENERATION OF RE FROM SHEEP

LANGUAGE

In NLP, the concept of regular expression (RE) by using Sheep
Language is illustrated as [8]:

A sheep can talk to another sheep with this language
“baaaaa!” .In this there is a discussion on how a regular
expression can be generated from a SHEEP Language.

 In the Sheep language:

“ba!”, “baa!”, “baaaaa!”

Finite state automata

Double circle indicates “accept state”

Regular Expression

(baa*) or (baa+!)

In this way a regular expression can be generated from a
Language by creating finite state automata first as from it RE is
generated.

6. DIFFERENT APPROACHES OF RE IN NLP [2] [3]

[10]

6.1 An Improved Algorithm for the Regular

Expression Constrained Multiple Sequence Alignment

Problems [2]

This is the first approach, in which there is an illustration in
which two synthetic sequences S1 = TGFPSVGKTKDDA, and
S2 =TFSVAKDDDGKSA are aligned in a way to maximize the
number of matches (this is the longest common subsequence
problem). An optimal alignment with 8 matches is shown in
part 3(a).

Fig 2(a): An optimal alignment with 8 matches [2]

For the regular expression constrained sequence alignment
problem in NLP with regular expression, R = (G + A)
££££GK(S + T), where £ denotes a fixed alphabet over which
sequences are defined, the alignments sought change.
The alignment in Part 2(a) does not satisfy the regular
expression constraint. Part2 (b) shows an alignment with which
the constraint is satisfied.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 171

Fig 2(b): An alignment with the constraint [2]

 The alignment includes a region (shown with a rectangle
drawn in dashed lines in the figure 2b) where the substring
GFPSVGKT of S1 is aligned with substring AKDDDGKS of
S2, and both substrings match R. In this case, optimal number
of matches achievable with the constraint decreases to 4 [2].

6.2 Automated Discovery of Valid Test Strings from

the Web using Dynamic Regular Expressions

Collation and Natural Language Processing [3]

In this second approach, there is a combination of Natural
Language Processing (NLP) techniques and dynamic regular
expressions collation for finding valid String values on the
Internet. The rest of the section provides details for each part of
the approach [3].

Fig 3: Overview of the approach [3]

6.2.1 Extracting Identifiers

The key idea behind the approach is to extract important
information from program identifiers and use them to generate
web queries. An identifier is a name that identifies either a
unique object or a unique class of objects. An identifier may be
a word, number, letter, symbol, or any combination of those.
For example, an identifier name including the string “email” is
a strong indicator that its value is expected to be an email
address. A web query containing “email” can be used to
retrieve example email addresses from the Internet [3].

6.2.2 Processing Identifier Names

Once the identifiers are extracted, their names are processed
using the following NLP techniques.
1) Tokenisation: Identifier names are often formed from
concatenations of words and need to be split into separate
words (or tokens) before they can be used in web queries.
Identifiers are split into tokens by replacing underscores with
whitespace and adding a whitespace before each sequence of
upper case letters.

For example, “an_Email_Address_Str” becomes “an email
address str” and “parseEmailAddressStr” becomes “parse email

address str”. Finally, all characters are converted to lowercase
[3].

2) PoS Tagging: Identifier names often contain words such as
articles (“a”, “and”, “the”) and prepositions (“to”, “at” etc.) that
are not useful when included in web queries. In addition,
method names often contain verbs as a prefix to describe the
action they are intended to perform.
For example, “parseEmailAddressStr” is supposed to parse an
email address. The key information for the input value is
contained in the noun “email address”, rather than the verb
“parse”. The part-of-speech category in the Identifier names
can be identified using a NLP tool called Part-of-Speech (PoS)
tagger, and thereby removing any non-noun tokens. Thus, “an
email address str” and “parse email address str” both become
“email address str” [3].

3) Removal of Non-Words: Identifier names may include non-
words which can reduce the quality of search results. Therefore,
names are filtered so that the web query should entirely consist
of meaningful words. This is done by removing any word in the
processed identifier name that is not a dictionary word.
For example, “email address str” becomes “email address”,
since “str” is not a dictionary word [3].

6.2.3 Obtaining Regular Expressions [3]

The regular expressions for the identifiers are obtained
dynamically from two ways:
1) RegExLib Search, and
2) Web Search.

RegExLib: RegExLib [9] is an online regular expression
library that is currently indexing around 3300 expressions for
different types (e.g., email, URL, postcode) and scientific
notations. It provides an interface to search for a regular
expression.

Web Search: When RegExLib is unable to produce regular
expressions, the approach performs a simple web search. The
search query is formulated by prefixing the processed identifier
names with the string “regular expression”.

For example, the regular expressions for “email address” are
searched by applying the query “regular expression” email
address. The regular expressions are collected by identifying
any string that starts with ^ and ends with $ symbols.

6.2.4 Generating Web Queries

Once the regular expressions are obtained, valid values can be
generated automatically, e.g., using automaton. However, the
objective here is to generate not only valid values but also
realistic and meaningful values. Therefore, a secondary web
search is performed to identify values on the Internet matching
the regular expressions. This section explains the generation of
web queries for the secondary search to identify valid values.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 172

The web queries include different versions of pluralized and
quoting styles explained in the following.

6.2.4.1 Pluralization

The approach generates pluralized versions of the processed
identifier names by pluralizing the last word according to the
grammar rules.
For example, “email address” becomes “email addresses”.

6.2.4.2 Quoting

The approach generates queries with or without quotes. The
former style enforces the search engine to target web pages that
contain all words in the query as a complete phrase. The latter
style is a general search to target web pages that contain the
words in the query. In total, 4 queries are generated for each
identifier name that represents all combinations of pluralisation
and quoting styles. For a processed identifier name “email
address”, the generated web queries are: email address, email
addresses; “email address”, “email addresses”.

6.2.4.3 Identifying Values

Finally, the regular expressions and the downloaded web pages
are used to identify valid values.

6.3 StriDFA for Multistring Matching [10]

In this method, multistring matching is done and is one of the
better approaches for matching pattern among the above two
approaches but still contain limitations.

Deterministic finite automaton (DFA) and nondeterministic
finite automaton (NFA) are two typical finite automata used to
implement regex matching. DFA is fast and has deterministic
matching performance, but suffers from the memory explosion
problem. NFA, on the other hand, requires less memory, but
suffers from slow and nondeterministic matching performance.
Therefore, neither of them is suitable for implementing high
speed regex matching in environments where the fast memory
is limited.

Fig 4: Traditional DFA for patterns “reference” and
“replacement” (some transitions are partly ignored for

simplicity) [10]

Suppose here two patterns are to be matched, “reference” (P1)
and “replacement” (P2. The matching process is performed by
sending the input stream to the automaton byte by byte. If the
DFA reaches any of its accept states (the states with double
circles), say that a match is found.

Fig 5: Tag “e” and a sliding window used to convert an input

stream into an SL stream with tag “e.” [10]

Fig 6: Sample StriDFA of patterns “reference” and
“replacement” with character “e” set as the tag (some

transitions are partly ignored) [10]

The construction of the StriDFA in this example is very simple.
Here first need to convert the patterns to SL streams. As shown
in Figure 6, the SL of patterns P1 and P2 are Fe (P1) =2 2 3 and
Fe (P2) = 5 2, respectively. Then the classical DFA
construction algorithm is constructed for StriDFA.

It is easy to see that the number of states to be visited during
the processing is equal to the length of the input stream (in
units of bytes), and this number determines the time required
for finishing the matching process (each state visit requires a
memory access, which is a major bottleneck in today’s
computer systems). This scheme is designed to reduce the
number of states to be visited during the matching process. If
this objective is achieved, the number of memory accesses
required for detecting a match can be reduced, and
consequently, the pattern matching speed can be improved. One
way to achieve this objective is to reduce the number of
characters sent to the DFA. For example, if select “e” as the
tag and consider the input stream “referenceabcdreplacement,”
as shown in Figure 5 , then the corresponding stride length (SL)
stream is Fe(S) = 2 2 3 6 5 2, where Fe(S) denotes the SL
stream of the input stream S, “e” denotes the tag character in

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 173

use. The underscore is used to indicate an SL, to distinguish it
as not being a character. As shown in Figure 6, the SL of the
input stream is fed into the StriDFA and compared with the SL
streams extracted from the rule set.

7. SUMMARY OF APPROACHES

Table 6 Regular expression meaning [8]

APPROACH DESCRIPTION PROBLEM

An improved
algorithm for
the regular
expression
constrained
multiple
sequence
alignment
problems

In this approach, a
particular RE
constraint is
followed.

Follows
constraints for
string matching
and used in
limited areas and
the results
produced are
arbitrary.

Automated
Discovery of
Valid Test
Strings from the
Web using
Dynamic
Regular
Expressions
Collation and
Natural
Language
Processing

In this approach,
gives valid values
and another benefit
is that the generated
values are also
realistic rather than
arbitrary.

Multiple strings
can’t be
processed or
matched at the
same time.

StriDFA for
Multistring
Matching

In this approach,
multistring matching
is performed. The
main scheme is to
reduce the number
of states during the
matching process.

Didn’t processed
the larger
alphabet set.

In Table VI, the approaches are different and have its own
importance. As the first approach follows some constraints for
RE and used in case where a particular RE pattern is given and
second and the third approach is quite different from the first
one as there is no such concept of constraints. As second
approach is used to extract and match the patterns from the web
queries and these queries can be of any pattern. We suggest
second approach which is better than the first and third
approach as it generally gives valid values and another benefit
is that the generated values are also realistic rather than
arbitrary. This is because the values are obtained from the
Internet which is a rich source of human-recognizable data.
The third approach is used to achieve an ultrahigh matching

speed with a relatively low memory usage. But still third
approach is not working for the large alphabet sets.

8. APPLICATIONS OF RE IN NLP [8]

1. Web search
2. Word processing, find, substitute (MS-WORD)
3. Validate fields in a database (dates, email address,

URLs)
4. Information extraction (e.g. people & company names)

CONCLUSIONS & FUTURE WORK

A regular expression, or RE, describes strings of characters
(words or phrases or any arbitrary text). An attempt has been
made to present the theory of regular expression in natural
language processing in a unified way, combining the results of
several authors and showing the different approaches for
regular expression i.e. first is a expression constrained multiple
sequence alignment problem and second is combination of
Natural Language Processing (NLP) techniques and dynamic
regular expressions collation for finding valid String values on
the Internet and third is Multistring matching regex. All these
approaches have their own importance and at last practical
applications are discussed.

Future work is to generate advanced algorithms for obtaining
and filtering regular expressions that shall be investigated to
improve the precision of valid values.

REFERENCES

[1]. K.R. Chowdhary, “Introduction to Parsing - Natural
Language Processing” http://krchowdhary.com/me-nlp/nlp-
01.pdf, April, 2012.
[2]. A .N. Arslan and Dan He, “An improved algorithm for the
regular expression constrained multiple sequence alignment
problem”, Proc.: Sixth IEEE Symposium on BionInformatics
and Bio Engineering (BIBE'06), 2006
[3]. M. Shahbaz, P. McMinn and M. Stevenson, "Automated
Discovery of Valid Test Strings from the Web using Dynamic
Regular Expressions Collation and Natural Language
Processing". Proceedings of the International Conference on
Quality Software (QSIC 2012), IEEE, pp. 79–88.
[4]. Sai Qian, “Applications for NLP -Lecture 6: Regular
Expression”
http://talc.loria.fr/IMG/pdf/Lecture_6_Regular_Expression-
5.pdf , October, 2011
[5]. P. M Nadkarni, L.O. Machado, W. W. Chapman
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168328/
[6]. H. A. Muhtaseb, “Lecture 3: REGULAR EXPRESSIONS
AND AUTOMATA”
[7]. A.McCallum, U. Amherst, “Introduction to Natural
Language Processing-Lecture 2”
CMPSCI 585, 2007
[8]. D. Jurafsky and J.H. Martin, “Speech and Language
Processing” Prentice Hall, 2 edition, 2008.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 03 Issue: 01 | Jan-2014, Available @ http://www.ijret.org 174

[9]. RegExLib: Regular Expression Library.
http://regexlib.com/.
[10]. Xiaofei Wang and Yang Xu, “StriFA: Stride Finite
Automata for High-Speed Regular Expression Matching in
Network Intrusion Detection Systems” IEEE Systems Journal,
Vol. 7, No. 3, September 2013.

