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Abstract

This paper presents steam temperature models &anstdistillation pilot-scale (SDPS) by comparinge®do Random Binary
Sequence (PRBS) versus Multi-Sine (M-Sine) pertiaribasignal Both perturbation signals were appliéal nonlinear steam
distillation system to study the capability of thésput signals in exciting nonlinearity of systdgmamics. In this work, both linear
and nonlinear ARX model structures have been ilgastd. Five statistical approaches have been olezbto evaluate the developed
steam temperature models, namely, coefficienttefuénation, B, auto-correlation function, ACF; cross-correlatidanction, CCF;
root mean square error, RMSE; and residual histogrdhe results showed that the nonlinear ARX madelsuperior as compared
to the linear models when M-Sine perturbation agghlio the steam distillation system. While, PRB&ig®tion exhibit insufficient

to model nonlinear system dynamic
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1. INTRODUCTION

Steam distillation is one of the earlier and comreeparation
techniques in chemical manufacturing [1], [2]. [®91,
estimated that 40,000 distillation columns operatethe
United State alone to produce the essential oipp@sing
40% of all energy usage in the refining and comityodi
chemical manufacturing sector [3]. In Malaysia, #ssential
oil is produced using steam distillation techniquew the
demand of essential oil is increasing every yeavertheless
the production of steam distillation process has been
explored widely [2], [4]. Only few number of resehrefforts
have been reported in improving the oil extractiechniques
since the past three decades [2].

In real time process, most of the chemical enginger
processes are nonlinear in their dynamics [1], [6], [7],
including the behavior of the distillation columi],[[5], [7],
[8]. Until today, almost all the works related tentification
of steam distillation column still using linear nadto
represent the process dynamic [1], [2], [9], [10Q11].
Unfortunately, the linear identification is limitédr a given
input range [7], [12], [13], [14]. In the last del=s, there has
been a tendency towards nonlinear modeling in wuario
application areas; encourage with technologicabwations
has resulted less limitations on the computationsmory
and data-acquisition level, making nonlinear modgk more
feasible and flexible choices [7], [12], [13], [14]

To be more feasible and flexible, a systematic riongds
required to describe a phenomenon of interest inifhroved
understanding for the purposes of simulation, mtezh and

control. In order to develop systematic model, eyst
identification is under control engineering fietdoffer how to
build the dynamics of a system as a set of mathieatahodel
based on the observation of input and output ddih [16]. The
mathematical model created is capable of relathgy gystem
output for any given input in such a way that it @ven predict
the future of the system. The primary goal of gyste
identification is to reduce errors between model aine system
[17]. The model is capable of facilitating the cofier and
optimizing the system in which the traditional aohtechnique
find a difficult to achieve [12], [14].

2. SYSTEM IDENTIFICATION

System identification research and applicationsteesn growth
up and it was recognized as important tool in nwuerfields.
Nowadays, system identification is getting moreraibn owing
to widespread development of sophisticated andcieffi
algorithms, coupled with the advancement of digitadcessing
and computing.

The derivation of a relevant ‘system descriptiononfi the
observed data is termed as system identificatiord the
resultant system description as a ‘model’ [1]. Btifiezally,

system identification deals with the problem of |8ing
mathematical models of dynamical systems to descthe
underlying mechanism of the observed data of t&esys [1].

In order to design and implement high performanteamtrol
system the dynamic model is required. The obtamedel must
be validated to verify whether the model is prewess before
implemented. This is done by comparing the outpltthe
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obtained model and the output of the plant using pkathe
experimental data that has been reserved for thijzoge [18].

There are two main types of empirical models: lin@adels
and nonlinear models [12]. Linear models provide an
appropriate representation of the process in a Ismal
neighborhood of an operating point. However, whée t
process is operated outside this constrained regfienmodel
predictions will not accurate. Other offer is noelar model,
where tend to capture more accurately the procebauior,
making the adequate for controlling a real prodasa wide
region of operation.

The distillation column are widely used in chemjgcesses
and exhibit nonlinear dynamic behavior [6], [1920]. In
recent year, the has been an increasing interesbdeling of
heating process especially in distillation colurarektract the
essential oil where the linear model become mostneon in
industrial application [21]. Unfortunately, linear
approximations are only valid for a given inputgar12].

The nature of the chemical industrial itself, ecoits of
operation and the unit operation themselves, ingpose
additional requirements on process models [7]. fibed for
improved product quality while maintaining a safada
economical operation requires that plants be opédraver a
broad range about the nominal operating point Thjs leads

to plant operation close to constraints and excites
nonlinearities in system behavior. In distillatiocolumn
exhibit symmetric output changes to symmetric inghanges
(reflux ratio) [22]. In addition, reacting systenftem display
nonlinearities arising due to the reaction mecharos due to
the non-isothermal nature of the rate constant [7This
nonlinear behavior presents a difficulty for linezontroller
due to their limitations [6]. Thus nonlinearityirgegral part of
chemical process operation and must be accountedtfibe
developing nonlinear models [7].

From logical perspective it would seem that a mwdr
system would require a nonlinear model to fully ibkhits
characteristics [23]. However, common practice ntbst a
linear model will be the first choice with which tdentify a
model of a nonlinear system process, and thatciigse of
action often leads to satisfactory model fit farpurpose [23].
In the case of approximation linear model of nogdinsystem,
it can be validate by compare linear and nonlimeadel to
identify which model display the best result. T the
system process able to fully exhibit its charast&s,
persistently exciting perturbation signal is reqdir
Otherwise, comparison between both model obtaindchat
exhibit significant improvement on this effort. Theain

3. PERTURBATION SIGNAL

System identification deals with the problem of htmaestimate
the model of a system from measured input and ogigmals
[24]. The system can be linear or nonlinear dependn type of
the system, linear or nonlinear model can be egtichd he most
important thing is perturbation signal injectedateystem must
have sufficient excitation (enough fluctuating) désired effect
in order to measure and describe some properthefsystem
dynamic.

In nonlinearity identification of system dynamicerpurbation
signal must be persistently exciting (or enougtctfiating) in

order to excite the full range of nonlinearity pess dynamics
[7]. For linear system, deterministic PRBS haverbeemmonly
used. However PRBS input is insufficient to exhiltite

nonlinearity behavior of dynamic system. It is greement with
the claimed by [14], [25], [26] that the PRBS catsiof only
two levels, the resulting data may not provide isight

information to identify nonlinear behavior [1], [1426], [27].

These signal cannot excite certain nonlinearitsssthat more
input levels in the sequence are necessary [7], [28], [27]. In

addition, the magnitude of PRBS is too large magsbin

estimation of linear kernel.

In this research, NARX model will be developed with
persistently exciting required perturbation sigridHevel PRS.
The objective of using M-level PRS input is to stubis signal
capability to excite the nonlinearity of system dgmc. The
advantages of these signal operate at many opgtatiels and
provide the possibility of identifying nonlineags behavior, or
of identifying linear behavior in the presence ahlinearities
[25], [26].

4. MODEL STRUCTURE SELECTION
4.1 ARX Modéd

An ARX model is one of the linear model in system
identification. The ARX model comprising of pasttput and
exogenous input variable is represented as past ogta. The
ARX model is among the simple models for lineargess and it
is easy to be implemented.

The ARX model is written as [15]:

-nk B(q) U(t)+ 1
A(a) A(a)

y(t) =g e(t)

1)
Where the polynomial A(q) and B(q) are defined by:

-na

A(g) =1+aqg™*+..+a.,q

objective of this research is to reveal a solution this (2)
problem.

B(q) =b, +bgq™*+..+b,q™™ 3)
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Where A(q) and B(g)to be estimated which repredast
overall system dynamic andg-las time shift operamat this q
description is completely equivalent to the Z-tfan® form
i.e. g corresponds to z [15] and the signal flam be realized
as:

«— ©

T | =

Uu—

B 1
A

Fig 1. The ARX model structure

4.2 NARX Model

Most dynamical systems can be better represented by

nonlinear models [12], [28], where the models abée a@o
describe the global behavior of the system overwhele
operating range. It contrast with linear models anty able
approximate the system around a given operatirgt p28].
One of the most frequent studied classes of noalingodels
are called block-oriented models, which consist tog
interconnection of linear blocks and nonlinear kide9].
There are many approach of nonlinear system ideatiién
methods, where the methods are different owing dded
positioning of interconnection, types of linear amohlinear
functions [28]. One of the method is nonlinear agtgressive
with exogenous input (NARX) model, where the nosdirity
estimator block is combine with linear ARX and rinehr
function in parallel, maps the regressor outputht® model
output.

The structure of NARX shown in figure 2:

—> Regressor — Nonlinear
U(t), U(t-l),... g()
y(@®), y(t-1),...

linear
) (LTI

Fig 2: Structure Of Nonlinear Auto-Regressive With
Exogenous Input (NARX)

The equation of NARX model can be written as:

yB =LTu—7) + g(lu —1Q) + 4 4)

Where y(t) is output, r are the regressors, upsiirand L is an
autoregressive with exogenous (ARX) linear functi@nis a
scalar off-set and g(Q(u-r)) represents output ohlinear
function and Q is projection matrix that makes tiadculations
well-conditioned.

The NARX model is suitable for modeling both thectastic
and deterministic components of a system and istdapof
describing wide variety of nonlinear system [2].

5.MODEL VALIDATION

Model validation is final stage, where the staigemandatory
step to decide the identified model is acceptedaif30]. The
purpose of model validation is to verify whethee tidentified
model fulfill the modeling requirement for a padiar
application. In achieving good estimated models inecessary
to distinguish between the lack of fit between nicaled data
due to random processes and that due to lack aemo
complexity.In most statistical tools, a measurerafdel fit is
determine by coefficient of determination, R2 [3The R2
given by;
7 55E

R*=1-=—:0=<R*=1
35T

(5)

The RMSE is used to assess the forecasting perfmenaf a
predictor. As the prediction accuracy increaseg® BRMSE
decreases [32]. The RMSE is given by;

N
— |tew . oz
RMSE = wzmu-l_h] ©)

The RMSE also used to evaluate the performancepoédictor
over another by calculating the improvement acldewv¢ is
useful especially when calculating the significamprovement
achieved by a nonlinear model over a linear mogi&]. |

The improvement calculation is given as follows;

—[nonlinear — linear)
- = 100%
Lirear @)

Improvement =

The ACF is a mathematical function that is usedjdently in

signal processing for analyzing series of valueshsas time-
domains signal [2].Relative to PSD, ACF is its tidmmain

counterpart [34]. The ACF reveal the strength datrenship

between two observation as a function of the tirapasation
between them, or in other words, the cross-corcglatf a signal
with itself. ACF is useful in investigating repedgipatterns in a
signal such as determining the presence of a perisidnal

which has been buried by noise. This capability @sakCF very
important tools in determining the whiteness oth#stic signal.
The ACF and CCF respectively given by;
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TE®) -t -1) -8

Ree(T) = E‘Ll{gl&j —3F ®)
g R @) — @)t —1) - &)
uE{T:] - Ele{ﬂ{ﬂ _ 'E_I:]: E‘;J:]_{E{ﬂ _ ﬂ: (9)

where the terms of and ¥ are the average residuals and

inputs respectivelyt is the lag and it is common to investigate
the ACF and CCF between lag +20 [35].

The power spectral density (PSD) of a signal isscdption
of the distribution of the signal power of the sgrversus
frequency [34]. The PSD is capable of capturingfteguency
content of a stochastic process. The unit of PS&imsmonly
expressed in power/frequency (dB/Hz). The PSD sfgaal
can be estimated by using periodogram.

Residual which is also known as prediction erra@cdies the

error in the fit of the model to th& ™ observation:. The
residuals can be used to provide the informatioautithe

adequacy of the fitted model[31]. Residuali 8 prediction is

to 100°C. Power
manipulated by providing control signal.

RTD2

C

RTD1

controller

used to control

Condenser

heatee a

Fig 3. Prototype of Steam Distillation Pilot Plant
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Whereli is the observed outpo; is the predicted output, iis I

the i sequence and N is the number the data. From a-time

series plot of residuals, if the residual is ranfodistributed Pﬁf

around zero, it indicated that the estimated mafdsicribes -

the observed data well[36]. ¥
SDES

Histogram is a method to summarize a data distahunto

several intervals and the number of data pointsach interval L

is represented as bar length[37]. It is sometireésrired to as Ttz

frequency distribution[38]. Based on the time-serief 'C*Ez;'f"—“s

residual ¥i., a histogram can be plotted. The residual are Preprocmaing

expected to be normally distributed because themabr
distribution often provides an adequate approxiomato the
distribution of many measured guantities.

6. EXPERIMENTAL DESIGN
6.1 Experimental Set-Up

The steam distillation pilot plant using 1500W etybe heater
to generate steam. The heater is immersed in @Dlifewater
for 2000 seconds. Two (2) resistive temperatureeaets
(RTD) PT-100 were installed. The primary RTD used t
monitor water temperature in the column, and seagnBTD
to monitor steam temperature that was installechB3fom
steam outlet. The output from both RTDs is resistaare
converting to voltage by using signal convertet ghraduced
output within 1V to 5V for temperature range varfesn 0°C

Iilodsd] 3 enoroees

5 ol mction
¥
hlcdsl Proemesar
Eas srak o
¥
Alodd Vatidation
[
* * ¥ *
e e [ | g
Histopmm

Fig 4: Experimental Steps
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6.3 Data Analysis
6.3.1 PRBS Perturbation

Three sets of data collected perturb by PRBS pgeatiom.
The PRBS data with difference probability bandOE)8, 0.05
and 0.02 are shown in the Figures 5, 7 and 9 réspbc The
Figures 6, 8, 10 shows the output and input PSDPRRBS
data for B; 0.08, 0.05 and 0.02 respectively. Ffmyure 6(a),
8(a) and 10(a), the PSD shows that the output kigna
concentrated at very low frequencies. It is obvithat as the
frequency increased, the signal power is drops.nvede,
the input signals in figures 6(b), 8(b) and 10(@?e richer in
frequency contents. The bandwidth of the system s
approximately less than 0.05 Hz. This signifieg tha system
is of very low frequency dynamics.

Measured Temperature

SLIJO 10‘00 1500
Sample number
PRBS (B=0.08)

u(t)

o

0 500 1000 1500
Sample number

Fig5: PRBS data set 1

Power/ Frequency (dB/Hz)

(a)

Power/ Frequency (dB/Hz)

y(t)

u(t)

Power/ Frequency (dB/Hz)

i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 03 0.9 1

Frequency (Hz)

(b)

Fig 6: The PSD of simulated for data set 1
(a) output (b) input

Measured Temperature
100 T T

75

1F

0 560 10|00 1500
Sample number

PRBS (B=0.05)

1500
Sample number

Fig 7: PRBS data set 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (Hz)

(@
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Fig 9: PRBS data set 3
6.3.2 M-Sine Perturbation
) i Measured Temperature
Three sets of data collected perturb by M-Sineupation. : : : - ‘ : :
Figures 11, 13, 15 show the measured output anat itigta Wwwww
driven by M-Sine input signals. All the data setllwie g m |
estimated and validated; then proceed to comparemadels -
developed by PRBS perturbation. = ]
Referring to figures 12(a), 14(a) and 16(a) PSDashthat the e e mhesbe Sa;réﬁ lg”"n rsnéi)erm e be e
output signal is concentrated at very low frequescdnly. M SP u |
Meanwhile, the input signal in figures 12(b), 14émd 16(b), . ->ine signa
is richer in frequency content. Means each inpub RBows oL ,
that the input consists of signals at various feggies. The s -
power signal is spread almost consistently throughbe > -} .
frequencies, which is almost same to white noissgperties. :
The bandwidth of the system is approximately lagst0.1Hz. ) T e Stesbw o ste =g cbo  wto sesaooo
This signifies that the system is of very low freqay Sample number

dynamics. It is obvious that as the frequency seased, the

signal power drops. Fig 11: M-Sine Data set 1
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Fig 12: The PSD of simulated for data set 2
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Fig 13: M-Sine PRS Data set 2
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Fig 15: M-Sine Data set 3
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7.RESULTS

7.1 Resultsfor PRBS Data

Three sets of data have been collected perturbe@RBS Referring to table 3 the comparison R and RMSE show no
perturbation; used for training and testing using ARX and significant improvement detected by the NARX oviee tARX
NARX approaches. The summary of results as peatitetl models. The NARX mod_els is failed to outperform tAE_X
and 2, which is represent the ARX and NARX perfanoe models; reveal the nonlinear model poor as a ptediof

respectively. The data set 1, 2 and 3 represemtsAfRX1- nonlinear steam distillation system.
PRBS, ARX2-PRBS and ARX3-PRBS respectively. For the .
nonlinear models, suffix N is added and known asRMA- Figures 17 show the measured output, predicteduolapd

PRBS. NARX2-PRBS and NARX3-PRBS. The table 3 shows residual for the ARX1-PRBS:rom the residual p|0t, the 1-SAP
the R and RMSE comparison in improvement achieved by Prediction isin good agreement with the measuregu.
NARX models over the ARX models.

From the table 1 and 2, the ARX and NARX modelsilgixh
almost identical model fit and RMSE value.

Table 1: Summary of ARX results using PRBS perturbation

Model R (%) ACF CCF RMSE
ARX1-PRBS  97.95 - - 0.001428
ARX2-PRBS  97.00 lag 1,2,3 (3) - 0.001714
ARX3-PRBS  97.01 lag 1,2,8 (3) - 0.001729

Table 2: Summary of NARX result using PRBS perturbation

Model R (%) ACF CCF RMSE
NARX1-PRBS 97.96 - - 0.001422
NARX2-PRBS 97.77 lag 1,2,3 (3) lag 1,2,3 (3) 001710
NARX3-PRBS 97.01 lag 1,2,8 (3) - 0.001720

Table 3: R? and RMSE comparison between ARX and NARX modeldidation data.

Models % R? RMSE
ARX1-PRBS 97.95 0.001428
NARX1-PRBS 97.96 0.001422

% | mprovement 0.01% 0.42%
ARX2-PRBS 97.00 0.001714
NARX2-PRBS 97.77 0.001710
% Improvement 0.79% 0.23%
ARX3-PRBS 97.01 0.001729
NARX-PRBS 97.01 0.001720

% Improvement 0% 0.52%

The figure 18 show the residual histogram for ARXRBS,
which is indicate the data normally distributed gmdduced
zero means close to the zero.
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Figures 19(a) show the ACF of the residual. In Haibres,
no significant correlation is detected outside tB8%
confidence limit, which indicates the residual ppassed the
whiteness test. The cross-correlation test for ARPRBS is
in figures 19(b). From the figure, no correlatiortetted

Measured, predicted & residual. B5=97.95%
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(b)
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Fig 17: ARX1-PRBS
(a) Measured (b) predicted (c) residual.
g !
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Fig 18: The residual histogram of ARX1-PRBS for validation
data.
05 4
= @ @ -
0Ey 5 10 15 20 25

outside the 95% confidence limit of CCF, which siigs
that the information were fully utilized by the ned
structure.

e Lag
& ()
g | IITTo0esses ot

-25 -20 -15 -10 -5 0 5 10 15 20 25
Lag
(b)

Fig 19: Correlation tests of ARX1-PRBS
(a) ACF (b) CCF
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Fig 20: Validation of NARX1-PRBS (a) simulated (b)
predicted (c) residual

Figures 20 show the measured output, predictedubwpd
residual for the NARX1-PRBS. From the residual ptbe 1-
SAP prediction is in good agreement with the messoutput.
In figure 21 shows the residual histogram for NARRKRBS,
which is indicate the data normally distributed grdduced
zero means close to the zero.
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Figures 22(a) show the ACF of the residual. In Hagbres, no
significant correlation is detected outside the 988ffidence

limit, which indicates the residual has passedahigeness test.

The cross-correlation test for ARX1-PRBS is irufigs 22(b).
From the figure, no correlation detected outside &b6%
confidence limit of CCF, which signifies that thefarmation
were fully utilized by the model structure.
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Fig 21: The residual histogram for NARX1-PRBS.

7.2 Result for M-Sine
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Fig 22: Correlation tests of NARX1-PRBS (a) ACF (b) CCF

Table 4: Summary of ARX result using M-Sine perturbation

Model R (%) ACF CCF RMSE

ARX1-MSine 65.07 - - 0.01133
ARX2-MSine 63.94 - - 0.01258
ARX3-MSine 68.65 lag 13(1) - 0.01262

Table 5: Summary of NARX result using M-Sine perturbation

Model R (%) ACF CCF RMSE

NARX1-MSine 98.84 - lag -20~-10,-4~-1(25) 0.00525
NARX2-MSine 99.00 - - 0.00627
NARX3-MSine 99.17 - - 0.00514

Legend: Shaded values indicate the best model.

Table 4 and 5 shows the result summary of ARX adRX
models driven by M-Sine input respectively. TRfefor linear
ARX models is less than 70%.

However, NARX models exhibits very godtf compared to
ARX models. The comparison ¢¥ and RMSE show the
significant improvement achieved by the NARX ovéet

ARX models. The NARX3-MSine is the best model where
highest model fit, passed correlation tests ancestvViRMSE.
The second best is NARX2-MSine model, where the ehod
also sufficient to approximate the nonlinear systesh, while
satisfying all validation criteria’s.
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Table6: RRand RMSE result comparison between ARX and
NARX model for validation data.

Models % R RM SE
ARX1-MSine 65.07 0.01133
NARX1-MSine 98.84 0.00525
I mprovement 51.90% 53.66%
ARX2-MSine 63.94 0.01258
NARX2-MSine 99.00 0.00627
I mprovement 54.83% 50.15%
ARX3-MSine 68.65 0.01262
NARX3-MSine 99.17 0.00514
Improvement 44.46% 59.27%

Legend: Shaded value indicates best result.

The improvement achieved by the NARX models over th
ARX models driven by M-Sine input is clearly seartable

6, which is the’? and RMSE is improved more than 40% and
50% respectively. Claimed by [33], [39], the gooddal or
predictor is capable to reveal significant improes of
RMSE, as the prediction accuracy increases, the RMS
decreases. Means, it is apparent that the NARX fode
perturbed by M-Sine capable to predict the nonlireeam
distillation system behavior.

Figure 23 shows the measured output, predictedresidual
for NARX2-MSine models; second best model. The joted
output shows good agreement with the measured Qutpu
which can be confirmed by the residual plot. Inufig 24,
residual histogram for NARX2-MSine is normally distited
and indicates the model produced residuals meae ¢to the
zero. Figures 25(a) is ACF result for NARX2-MSirghow
the residual pass the whiteness test since altgpb@ within
the 95% confidence limit. The CCF results for NARMSine
show in figures 25 (b), no significant correlatitbetween
input and residual, thus information in the tragidata was
completely modeled.

Figure 26 shows the measured output, predictedubpd
residual for the best model; NARX3-MSine. The potelil
output shows good agreement with the simulated uutp
which can be confirmed by the residual plot. Irufig 27, the
residual histogram of NARX3-MSine model is disttibd as
per normal.

The ACF for NARX3-MSine show in figure 28(a), the
residual pass the whiteness test since all poiat&ithin the
95% confidence limit.

The CCF results for NARX3-MSine show in figure 28,(no
significant correlation between input and residutius
information in the training data was completely raled.

Measured, predicted & residual ¥ 99.00%
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Fig 23: Validation of NARX2-MSine (a) simulated (b)
predicted (c) residual
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(b)

Fig 25: Correlation tests of NARX2-MSine
(a) ACF (b) CCF
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Fig 26: Validation of NARX3-MSine (a) simulated (b)
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Fig 27: The residual histogram for NARX3-MSine.
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Fig 28: Correlation tests of NARX3-MSine
(a) ACF (b) CCF

CONCLUSIONS

Linear and nonlinear ARX models for the nonlinetgam
distillation system have been successfully develofesults
showed that NARX model were developed based on mé¢-Si
signal is the most accurate model in approximatiaglinear
system dynamic as compared to the model developseon
PRBS perturbation. It can be evident that altholfRBS
perturbation produced good model validation, itnseg that
the nonlinear model is almost as good as the limeadel,
which is inaccurate. In addition, the nonlinear eladtiven by
PRBS input failed to reveal an actual nonlineararste
distillation system behavior. On the other hand thodels
driven by M-Sine input revealed the unexplained aiyits
which can be translated in to significant improvetseshown
by the nonlinear models as compared to linear nsodel
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