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Abstract 
This paper presents steam temperature models for steam distillation pilot-scale (SDPS) by comparing Pseudo Random Binary 
Sequence (PRBS) versus Multi-Sine (M-Sine) perturbation signal Both perturbation signals were applied to nonlinear steam 
distillation system to study the capability of these input signals in exciting nonlinearity of system dynamics. In this work, both linear 
and nonlinear ARX model structures have been investigated. Five statistical approaches have been observed to evaluate the developed 
steam temperature models, namely, coefficient of determination, R2; auto-correlation function, ACF; cross-correlation function, CCF; 
root mean square error, RMSE; and residual histogram. The results showed that the nonlinear ARX models are superior as compared 
to the linear models when M-Sine perturbation applied to the steam distillation system. While, PRBS perturbation exhibit insufficient 
to model nonlinear system dynamic 
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1. INTRODUCTION 

Steam distillation is one of the earlier and common separation 
techniques in chemical manufacturing [1], [2]. In 1991, 
estimated that 40,000 distillation columns operate in the 
United State alone to produce the essential oil, comprising 
40% of all energy usage in the refining and commodity 
chemical manufacturing sector [3]. In Malaysia, the essential 
oil is produced using steam distillation techniques and the 
demand of essential oil is increasing every year, nevertheless 
the production of steam distillation process has not been 
explored widely [2], [4]. Only few number of research efforts 
have been reported in improving the oil extraction techniques 
since the past three decades [2].  
 
In real time process, most of the chemical engineering 
processes are nonlinear in their dynamics [1], [5], [6], [7], 
including the behavior of the distillation column [1], [5], [7], 
[8]. Until today, almost all the works related to identification 
of steam distillation column still using linear model to 
represent the process dynamic [1], [2], [9], [10], [11]. 
Unfortunately, the linear identification is limited for  a given 
input range [7], [12], [13], [14]. In the last decades, there has 
been a tendency towards nonlinear modeling in various 
application areas; encourage with technological innovations 
has resulted less limitations on the computational, memory 
and data-acquisition level, making nonlinear modeling a more 
feasible and flexible choices [7], [12], [13], [14] 
 
To be more feasible and flexible, a systematic modeling is 
required to describe a phenomenon of interest with improved 
understanding for the purposes of simulation, prediction and 

control. In order to develop systematic model, system 
identification is  under control engineering field is offer how to 
build the dynamics of a system as a set of mathematical model 
based on the observation of input and output data [15], [16]. The 
mathematical model created is capable of relating the system 
output for any given input in such a way that it can even predict 
the future of the system. The primary goal of system 
identification is to reduce errors between model and true system 
[17]. The model is capable of facilitating the controller and 
optimizing the system in which the traditional control technique 
find a difficult to achieve [12], [14]. 
 
2. SYSTEM IDENTIFICATION 

System identification research and applications has been growth 
up and it was recognized as important tool in numerous fields. 
Nowadays, system identification is getting more attention owing 
to widespread development of sophisticated and efficient 
algorithms, coupled with the advancement of digital processing 
and computing. 
 
The derivation of a relevant ‘system description’ from the 
observed data is termed as system identification, and the 
resultant system description as a ‘model’ [1]. Scientifically, 
system identification deals with the problem of building 
mathematical models of dynamical systems to describe the 
underlying mechanism of the observed data of the systems [1]. 
In order to design and implement high performance of control 
system the dynamic model is required. The obtained model must 
be validated to verify whether the model is preciseness before 
implemented. This is done by comparing the output of the 
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obtained model and the output of the plant using part of the 
experimental data that has been reserved for this purpose [18]. 
 
There are two main types of empirical models: linear models 
and nonlinear models [12]. Linear models provide an 
appropriate representation of the process in a small 
neighborhood of an operating point. However, when the 
process is operated outside this constrained region, the model 
predictions will not accurate. Other offer is nonlinear model, 
where tend to capture more accurately the process behavior, 
making the adequate for controlling a real process in a wide 
region of operation. 
 
The  distillation column are widely used in chemical processes 
and exhibit nonlinear dynamic behavior [6], [19], [20]. In 
recent year, the has been an increasing interest in modeling of 
heating process especially in distillation column to extract the 
essential oil where the linear model become most common in 
industrial application [21]. Unfortunately, linear 
approximations are only valid for a given input range [12]. 
 
The nature of the chemical industrial itself, economics of 
operation and the unit operation themselves, imposes 
additional requirements on process models [7]. The need for 
improved product quality while maintaining a safe and 
economical operation requires that plants be operated over a 
broad range about the nominal operating point [7]. This leads 
to plant operation close to constraints and excites 
nonlinearities in system behavior. In distillation column 
exhibit symmetric output changes to symmetric input changes 
(reflux ratio) [22]. In addition, reacting system often display 
nonlinearities arising due to the reaction mechanism or due to 
the non-isothermal nature of the rate constant [7].  This 
nonlinear behavior presents a difficulty for linear controller 
due to their limitations [6]. Thus nonlinearity is integral part of 
chemical process operation and must be accounted for while 
developing nonlinear models [7].  
 
From logical perspective it would seem that a nonlinear 
system would require a nonlinear model to fully exhibit its 
characteristics [23]. However, common practice most that a 
linear model will be the first choice with which to identify a 
model of a nonlinear system process, and that this course of 
action often leads to satisfactory model fit for its purpose [23]. 
In the case of approximation linear model of nonlinear system, 
it can be validate by compare linear and nonlinear model to 
identify which model display the best result. To ensure the 
system process able to fully exhibit its characteristics, 
persistently exciting perturbation signal is required. 
Otherwise, comparison between both model obtained will not 
exhibit significant improvement on this effort. The main 
objective of this research is to reveal a solution to this 
problem. 
 
 
 

3. PERTURBATION SIGNAL 

System identification deals with the problem of how to estimate 
the model of a system from measured input and output signals 
[24]. The system can be linear or nonlinear depending on type of 
the system, linear or nonlinear model can be estimated. The most 
important thing is perturbation signal injected to a system must 
have sufficient excitation (enough fluctuating) of desired effect  
in order to measure and describe some property of the system 
dynamic.  
 
In nonlinearity identification of system dynamic, perturbation 
signal must be persistently exciting (or enough fluctuating) in 
order to excite the full range of nonlinearity process dynamics 
[7]. For linear system, deterministic PRBS have been commonly 
used. However PRBS input is insufficient to exhibit the 
nonlinearity behavior of dynamic system. It is in agreement with 
the claimed by [14], [25], [26] that the PRBS consists of only 
two levels, the resulting data may not provide sufficient 
information to identify nonlinear behavior [1], [14], [26], [27]. 
These signal cannot excite certain nonlinearities, so that more 
input levels in the sequence are necessary [7], [17], [26], [27]. In 
addition, the magnitude of PRBS is too large may bias in 
estimation of linear kernel. 
 
In this research, NARX model will be developed with 
persistently exciting required perturbation signal; M-level PRS. 
The objective of using M-level PRS input is to study this signal 
capability to excite the nonlinearity of system dynamic. The 
advantages of these signal operate at many operating levels and 
provide the possibility of identifying nonlinearities behavior, or 
of identifying linear behavior in the presence of nonlinearities 
[25], [26]. 
 
4. MODEL STRUCTURE SELECTION  

4.1 ARX Model 

An ARX model is one of the linear model in system 
identification. The ARX model comprising of past output and 
exogenous input variable is represented as past input data. The 
ARX model is among the simple models for linear process and it 
is easy to be implemented. 
 
The ARX model is written as [15]: 
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Where A(q) and B(q)to be estimated which represent the 
overall system dynamic andq-1as time shift operator and this q 
description is completely equivalent to the Z-transform form 
i.e. q  corresponds to z [15] and the signal flow can be realized 
as : 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: The ARX model structure 
 
4.2 NARX Model 

Most dynamical systems can be better represented by 
nonlinear models [12], [28], where the models are able to 
describe the global behavior of the system over the whole 
operating range. It contrast with linear models are only able 
approximate the system around  a given operating point [28].  
One of the most frequent studied classes of nonlinear models 
are called block-oriented models, which  consist of the 
interconnection of linear blocks and nonlinear block [29].  
There are many approach of nonlinear system identification 
methods, where the methods are different owing to varied 
positioning of interconnection, types of linear and nonlinear 
functions [28]. One of the method is nonlinear auto regressive 
with exogenous input (NARX) model, where the nonlinearity 
estimator block is combine with linear ARX and nonlinear 
function in parallel, maps the regressor output to the model 
output.  
 
The structure of NARX shown in figure 2:  
 
 
 
 
 
 
 
 
 

Fig 2: Structure Of Nonlinear Auto-Regressive With 
Exogenous Input (NARX) 

 
The equation of NARX model can be written as:  
 

       (4) 
 

Where y(t) is output, r are the regressors, u is input and L is an 
autoregressive with exogenous (ARX) linear function. D is a 
scalar off-set and g(Q(u-r)) represents output of nonlinear 
function and Q is projection matrix that makes the calculations 
well-conditioned. 
 
The NARX model is suitable for modeling both the stochastic 
and deterministic components of a system and is capable of 
describing wide variety of nonlinear system [2].  
 
5. MODEL VALIDATION 

Model validation  is final stage, where the stage  is mandatory 
step to decide the identified model is accepted or not[30]. The 
purpose of model validation is to verify whether the identified 
model fulfill the modeling requirement for a particular 
application. In achieving good estimated model, it is necessary 
to distinguish between the lack of fit between model and data 
due to random processes and  that due to lack of model 
complexity.In most statistical tools, a measure of model fit is 
determine by coefficient of determination, R2 [31]. The R2 
given by; 
 

          (5) 
 
The RMSE is used to assess the forecasting performance of a 
predictor. As the prediction accuracy increases, the RMSE 
decreases [32]. The RMSE is given by; 
 

           (6) 
 
The RMSE also used to evaluate the performance of a predictor 
over another by calculating the improvement achieved. It is 
useful especially when calculating the significant improvement 
achieved by a nonlinear model over a linear model [33]. 
 
The improvement calculation is given as follows; 
 

 (7) 
 
The ACF is a mathematical function that is used frequently in 
signal processing for analyzing series of values such as time-
domains signal [2].Relative to PSD, ACF is its time-domain 
counterpart [34]. The ACF reveal the strength of relationship 
between two observation as a function of the time separation 
between them, or in other words, the cross-correlation of a signal 
with itself. ACF is useful in investigating repeating patterns in a 
signal such as determining the presence of a periodic signal 
which has been buried by noise. This capability makes ACF very 
important tools in determining the whiteness of stochastic signal. 
The ACF and CCF respectively given by; 
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     (8) 
 

     (9) 
 

where the terms of  and  are the average residuals and 

inputs respectively.  is the lag and it is common to investigate 
the ACF and CCF between lag ±20 [35].  
 
The power spectral density (PSD) of a signal is a description 
of the distribution of the signal power of the signal versus 
frequency [34]. The PSD is capable of capturing the frequency 
content of a stochastic process. The unit of PSD is commonly 
expressed in power/frequency (dB/Hz). The PSD of a signal 
can be estimated by using periodogram.  
 
Residual which is also known as prediction error describes the 

error in the fit of the model to the observation . The 
residuals can be used to provide the information about the 

adequacy of the fitted model[31]. Residual of  prediction is 
given 
 

-  ;i = 1,2,3,….,N 
 

Where  is the observed output,  is the predicted output, iis 

the  sequence and N is the number the data. From a time –
series plot of residuals, if the residual is randomly distributed 
around zero, it indicated that the estimated model describes 
the observed data well[36]. 
 
Histogram is a method to summarize a data distribution into 
several intervals and the number of data points in each interval 
is represented as bar length[37]. It is sometimes referred to as 
frequency distribution[38]. Based on the time-series of 

residual ., a histogram can be plotted. The residual are 
expected to be normally distributed because the normal 
distribution often provides an adequate approximation to the 
distribution of many measured quantities.  
 
6. EXPERIMENTAL DESIGN 

6.1 Experimental Set-Up 

The steam distillation pilot plant using 1500W coil-type heater 
to generate steam. The heater is immersed in 10liters of water 
for 2000 seconds. Two (2) resistive temperature detectors 
(RTD) PT-100 were installed. The primary RTD used to 
monitor water temperature in the column, and secondary RTD 
to monitor steam temperature that was installed 30cm from 
steam outlet. The output from both RTDs is resistance are 
converting to voltage by using signal converter that produced 
output within 1V to 5V for temperature range varies from 0°C 

to 100°C. Power controller used to control heater are 
manipulated by providing control signal. 
 

 
 

Fig 3: Prototype of Steam Distillation Pilot Plant 
 
6.2 Methodology 

 
 

Fig 4: Experimental Steps 
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6.3 Data Analysis 

6.3.1 PRBS Perturbation 

Three sets of data collected perturb by PRBS perturbation. 
The PRBS data with difference probability band, B; 0.08, 0.05 
and 0.02 are shown in the Figures 5, 7 and 9 respectively. The 
Figures 6, 8, 10 shows the output and input PSD for PRBS 
data for B; 0.08, 0.05 and 0.02 respectively. From figure 6(a), 
8(a) and 10(a), the PSD shows that the output signal is 
concentrated at very low frequencies. It is obvious that as the 
frequency increased, the signal power is drops. Meanwhile, 
the input signals in figures 6(b), 8(b) and 10(b)  are richer in 
frequency contents. The bandwidth of the system is 
approximately less than 0.05 Hz. This signifies that the system 
is of very low frequency dynamics. 
 

Measured Temperature 

 
Sample number 
PRBS (B=0.08) 

 
Sample number 

 
Fig 5: PRBS data set 1 
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Frequency (Hz) 

 
(b) 

 
Fig 6: The PSD of simulated for data set 1 

(a) output (b) input 
 

Measured Temperature 
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PRBS (B=0.05) 
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Fig 7: PRBS data set 2 
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Fig 8: The PSD of simulated for data set 2 

(a) Output (b) input 
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Fig 9: PRBS data set 3 
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Fig 10: The PSD of simulated for data set 3 

(a) Output (b) input 
 
 

6.3.2 M-Sine Perturbation 

Three sets of data collected perturb by M-Sine perturbation. 
Figures 11, 13, 15 show the measured output and input data 
driven by M-Sine input signals. All the data set will be 
estimated and validated; then proceed to compare with models 
developed by PRBS perturbation.  
Referring to figures 12(a), 14(a) and 16(a) PSD shows that the 
output signal is concentrated at very low frequencies only. 
Meanwhile, the input signal in figures 12(b), 14(b) and 16(b), 
is richer in frequency content. Means each input PSD shows 
that the input consists of signals at various frequencies. The 
power signal is spread almost consistently throughout the 
frequencies, which is almost same to white noise properties. 
The bandwidth of the system is approximately less than 0.1Hz. 
This signifies that the system is of very low frequency 
dynamics. It is obvious that as the frequency is increased, the 
signal power drops.  
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Fig 11: M-Sine Data set 1 
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Fig 12: The PSD of simulated for data set 2 

(a) Output (b) input 
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Fig 13: M-Sine PRS Data set 2 
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Fig 14: The PSD of simulated for data set 2 
(a) Output (b) input 
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Fig 15: M-Sine Data set 3 
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Fig 16: The PSD of simulated for data set 3 
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7. RESULTS 

7.1 Results for PRBS Data 

Three sets of data have been collected perturbed by PRBS 
perturbation; used for training and testing using the ARX and 
NARX approaches. The summary of results as per in table 1 
and 2, which is represent the ARX and NARX performance 
respectively. The data set 1, 2 and 3 represents the ARX1-
PRBS, ARX2-PRBS and ARX3-PRBS respectively. For the 
nonlinear models, suffix N is added and known as NARX1-
PRBS, NARX2-PRBS and NARX3-PRBS. The table 3 shows 
the R2 and RMSE comparison in improvement achieved by 
NARX models over the ARX models. 
 
From the table 1 and 2, the ARX and NARX models exhibit 
almost identical model fit and RMSE value. 
 
 
 

 
 
 
Referring to table 3 the comparison of R2 and RMSE show no 
significant improvement detected by the NARX over the ARX 
models. The NARX models is failed to outperform the ARX 
models; reveal the nonlinear model poor as a predictor of 
nonlinear steam distillation system. 
 
Figures 17 show the measured output, predicted output and 
residual for the ARX1-PRBS. From the residual plot, the 1-SAP 
prediction is in good agreement with the measured output.  
 
 
 
 
 
 

 
Table 1: Summary of ARX results using PRBS perturbation 

 
Model  R2 (%)  ACF    CCF     RMSE 
ARX1-PRBS  97.95  -   -    0.001428 
ARX2-PRBS 97.00  lag 1,2,3 (3)  -    0.001714 
ARX3-PRBS 97.01  lag 1,2,8 (3)  -    0.001729 

 
Table 2: Summary of NARX result using PRBS perturbation 

 
Model  R2 (%)  ACF    CCF     RMSE 
NARX1-PRBS 97.96  -   -    0.001422 
NARX2-PRBS 97.77  lag 1,2,3 (3)  lag 1,2,3 (3)   0.001710 
NARX3-PRBS 97.01  lag 1,2,8 (3)  -    0.001720 

 
 

Table 3: R2 and RMSE comparison between ARX and NARX model for validation data. 
 

______________________________________________________ 
Models          % R2         RMSE 

______________________________________________________  
ARX1-PRBS  97.95  0.001428 
NARX1-PRBS   97.96  0.001422 

--------------------------------------------------------------------------------- 
             % Improvement          0.01%          0.42% 

--------------------------------------------------------------------------------- 
ARX2-PRBS 97.00  0.001714 
NARX2-PRBS 97.77  0.001710 

--------------------------------------------------------------------------------- 
         % Improvement          0.79%                         0.23% 

--------------------------------------------------------------------------------- 
ARX3-PRBS  97.01  0.001729 
NARX-PRBS  97.01   0.001720 

--------------------------------------------------------------------------------- 
        % Improvement          0%            0.52% 

______________________________________________________ 
 

 The figure 18 show the residual histogram for ARX1-PRBS, 
which is indicate the data normally distributed and produced 
zero means close to the zero. 
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Figures 19(a) show the ACF of the residual. In both figures, 
no significant correlation is detected outside the 95% 
confidence limit, which indicates the residual has passed the 
whiteness test. The cross-correlation test for ARX1-PRBS is 
in figures 19(b). From the figure, no correlation detected 

outside the 95% confidence limit of CCF, which signifies 
that the information were fully utilized by the model 
structure. 
 
 

 
Measured, predicted & residual. % R2=97.95% 

 
Sample number 

(a) 
 

 
Sample number 

(b) 
 

 
Sample number 

(c) 
 

Fig 17: ARX1-PRBS 
(a) Measured (b) predicted (c) residual. 

 
 

 
ε(t) 

 
Fig 18: The residual histogram of ARX1-PRBS for validation 

data. 
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Fig 19: Correlation tests of ARX1-PRBS 

(a) ACF (b) CCF 
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Fig 20: Validation of NARX1-PRBS (a) simulated (b) 
predicted (c) residual 

 
Figures 20 show the measured output, predicted output and 
residual for the NARX1-PRBS. From the residual plot, the 1-
SAP prediction is in good agreement with the measured output. 
In figure 21 shows the residual histogram for NARX1-PRBS, 
which is indicate the data normally distributed and produced 
zero means close to the zero. 
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Figures 22(a) show the ACF of the residual. In both figures, no 
significant correlation is detected outside the 95% confidence 
limit, which indicates the residual has passed the whiteness test. 
The cross-correlation test for  ARX1-PRBS is in figures 22(b). 
From the figure, no correlation detected outside the 95% 
confidence limit of CCF, which signifies that the information 
were fully utilized by the model structure. 
 

 
ε(t) 

 
Fig 21: The residual histogram for NARX1-PRBS. 

 
 
 
7.2 Result for M-Sine 
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Fig 22: Correlation tests of NARX1-PRBS (a) ACF (b) CCF 
 

 

 

 

 
 

Table 4: Summary of ARX result using M-Sine perturbation 
 

Model   R2
 (%)  ACF    CCF    RMSE 

___________________________________________________________________________________________ 

ARX1-MSine  65.07   -         -   0.01133 

ARX2-MSine  63.94   -         -   0.01258 

ARX3-MSine  68.65  lag 13(1)            -   0.01262 

 
Table 5: Summary of NARX result using M-Sine perturbation 

 
Model   R2

 (%)  ACF    CCF    RMSE 

___________________________________________________________________________________________ 

NARX1-MSine  98.84  -  lag -20~-10,-4~-1(25)    0.00525  

NARX2-MSine  99.00  -   -   0.00627 

NARX3-MSine  99.17  -   -   0.00514 

___________________________________________________________________________________________ 

Legend: Shaded values indicate the best model. 
 

 
Table 4 and 5 shows the result summary of ARX and NARX 
models driven by M-Sine input respectively. The R2 for linear 
ARX models is less than 70%.  
However, NARX models exhibits very good R2 compared to 
ARX models. The comparison of R2 and RMSE show the 
significant improvement achieved by the NARX over the 

ARX models. The NARX3-MSine is the best model where 
highest model fit, passed correlation tests and lowest RMSE. 
The second best is NARX2-MSine model, where the model 
also sufficient to approximate the nonlinear system well, while 
satisfying all validation criteria’s. 
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Table 6: R2 and RMSE result comparison between ARX and 
NARX model for validation data. 

____________________________________________ 
Models   % R2     RMSE 
____________________________________________ 
ARX1-MSine       65.07  0.01133  
NARX1-MSine  98.84  0.00525 

------------------------------------------------------------------ 
Improvement  51.90%  53.66%   

------------------------------------------------------------------ 
ARX2-MSine    63.94  0.01258 
NARX2-MSine  99.00  0.00627 

------------------------------------------------------------------ 
Improvement  54.83%  50.15% 

------------------------------------------------------------------ 
ARX3-MSine  68.65  0.01262 
NARX3-MSine  99.17  0.00514 

------------------------------------------------------------------ 
Improvement  44.46%  59.27% 

------------------------------------------------------------------ 
Legend: Shaded value indicates best result.  

 
The improvement achieved by the NARX models over the 
ARX models  driven by M-Sine input is clearly seen in table 
6, which is the R2 and RMSE is improved more than 40% and 
50% respectively. Claimed by [33], [39], the good model or 
predictor is capable to reveal significant improvement of 
RMSE, as the prediction accuracy increases, the RMSE 
decreases. Means, it is apparent that the NARX models 
perturbed by M-Sine capable to predict the nonlinear steam 
distillation system behavior. 
 
Figure 23 shows the measured output, predicted and residual 
for NARX2-MSine models; second best model. The predicted 
output shows good agreement with the measured output, 
which can be confirmed by the residual plot. In figure 24, 
residual histogram for NARX2-MSine is normally distributed 
and indicates the model produced residuals mean close to the 
zero. Figures 25(a) is ACF result for NARX2-MSine, show 
the residual pass the whiteness test since all points lie within 
the 95% confidence limit. The CCF results for NARX2-MSine 
show in figures 25 (b), no significant correlation between 
input and residual, thus information in the training data was 
completely modeled. 
 
Figure 26 shows the measured output, predicted output and 
residual for the best model; NARX3-MSine. The predicted 
output shows good agreement with the simulated output, 
which can be confirmed by the residual plot. In figure 27, the 
residual histogram of NARX3-MSine model is distributed as 
per normal. 
 
The ACF for NARX3-MSine show in figure 28(a), the 
residual pass the whiteness test since all points lie within the 
95% confidence limit. 
 

The CCF results for NARX3-MSine show in figure 28 (b), no 
significant correlation between input and residual, thus 
information in the training data was completely modeled. 
 

Measured, predicted & residual, %R2= 99.00% 

 
Sample number 

 
(a) 

 

 
Sample number 

 
(b) 

 

 
Sample number 

 
(c) 

 
Fig 23: Validation of NARX2-MSine (a) simulated (b) 
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Fig 24: Residual Histogram of NARX2-MSine 
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Fig 25: Correlation tests of NARX2-MSine 
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Measured, predicted & residual, %R2= 99.17% 

 
Sample number 

 
(a) 

 

 
Sample number 

 
(b) 

 

 
Sample number 

 
(c) 

 
Fig 26: Validation of NARX3-MSine (a) simulated (b) 
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Fig 27: The residual histogram for NARX3-MSine. 
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Fig 28: Correlation tests of NARX3-MSine 

(a) ACF (b) CCF 
 
CONCLUSIONS 

Linear and nonlinear ARX models for the nonlinear steam 
distillation system have been successfully developed. Results 
showed that NARX model were developed based on M-Sine 
signal is the most accurate model in approximating nonlinear 
system dynamic as compared to the model developed based on 
PRBS perturbation. It can be evident that although PRBS 
perturbation produced good model validation, it seemed that 
the nonlinear model is almost as good as the linear model, 
which is inaccurate. In addition, the nonlinear model driven by 
PRBS input failed to reveal an actual nonlinear steam 
distillation system behavior. On the other hand, the models 
driven by M-Sine input revealed the unexplained dynamics 
which can be translated in to significant improvements, shown 
by the nonlinear models as compared to linear models. 
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