
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 78

ARCHITECTURE AND IMPLEMENTATION ISSUES OF MULTI-CORE

PROCESSORS AND CACHING – A SURVEY

Bhaskar Das
1
, Ashim Kumar Mahato

2
, Ajoy Kumar Khan

3

1
Department of Information Technology, Assam University, Silchar

2
Department of Information Technology, Assam University, Silchar

3
Department of Information Technology, Assam University, Silchar

Abstract
As the performance gap between processors and main memory continues to widen, increasingly aggressive implementations of cache

memories are needed to bridge the gap. This paper includes what brought about the change from single processor architecture to

having multiple processors on a single die and some of the hurdles involved, and the technologies behind it. Having each processor on

a single die allows much greater communication speeds between the processors. For multi-threading and multitasking, security and

virtualization and physical restraints such as heat generation and die size, we need multi-core processor. Processor cache is the

performance bottleneck in most current architectures. Next, we consider some of the issues involved in the implementation of highly

optimized cache memories and survey the techniques that can be used to help achieve the increasingly stringent design targets and

constraints of multi-processors.

Keywords: Cache, Multi-core, Multi-tasking, Multi-Threading, virtualization.

---***---

1. INTRODUCTION

Traditional processor architectures have included the transistor

count into the hundreds of millions. This transistor, nano-scale

electronic switch, can switch between 1 and 0 states billions of

times in a second. So, power is very much needed. One way to

counteract the power consumed is to reduce the size of the

transistor. However, the transistor can only shrink so much

before the functionality of the electronic switch breaks down

and allows current to pass improperly [1]. These power

consumptions lead to heat production, another side-effect of

high transistor counts. These issues point toward a shift in

architectures: greater parallelism.

Multiple applications run on a single core processor, so the

operating system acts as scheduler-switching contexts between

the applications. This can require a complete dump of all

processor registers and possibly the cache(s), which is costly in

terms of completion time. For example, if there are two

processors working in parallel then no need to switch contexts

between the two applications in a running computer. The main

advantage from multiple cores, the programmer must divide the

application into simultaneous threads or be done by the

operating system for multitasking. A thread is a lightweight sub-

program that shares the same memory space as other threads

under the same program process. This notion of multi-threading

is challenging relatively new and isn't yet taught to be as

fundamental as, say, data structures.

Cache memory is small faster memory which is used to store

data temporarily portion of main memory that data are

frequently used. The main concepts of using cache memory to

improve processor performance have been easy to understood

and readable. Today, caches have become an important part of

every processor. Our main aim is to reduce the performance gap

between processor and main memory that is why we insert a

cache memory between processor and main memory.

The ability of caches to bridge the performance gap is depends

on two primary factors - the time needed to retrieve data from

the cache and the fraction of memory references that can be

satisfied by the cache. These two factors are commonly referred

to as access (hit) time and hit ratio respectively [16], [17]. The

access time is most important for first level caches because a

longer access time means a slower processor clock rate, more

pipeline stages. In order to minimize access time, cache access

should be triggered as soon as the address of the memory

reference is available. The hit ratio is also critical, both because

misses impose delays, and because off-chip bandwidth,

especially when there is a shared bus, is a very limited resource.

Next, in section 2 we will discuss basics of multi-core

architecture and cache technologies. In section 3

We will show how we can critically analyze the performance of

multi-core processor. Next, we will tell about the architecture of

multi-core processors. In section 5 we state about some

implementation issues of modern caches. Section 6 says how we

use the multi-core processor.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 79

2. BASICS

2.1 Computer Architectures

Past architectures have multiple physically separate processors.

Those architectures become gradually backdated to the multiple

on-chip processors due to mainly wire delay and caching

techniques. Wire delay is the time it takes for data to traverse

the physical wires. This can have a drastic effect on frequencies.

There is also the added problem of limited intra-processor

communication pins for multiple separate processors - a

problem not seen in multi-core processors.

2.2 Cache

Cache memory is small faster memory which is used to store

data temporarily portion of main memory that data are

frequently used. The main concepts of using cache memory to

improve processor performance have been easy to understood

and readable. Today, caches have become an important part of

every processor. Our main aim is to reduce the performance gap

between processor and main memory that is why we insert a

cache memory between processor and main memory.

Data cache was designed using two key concepts in mind –

1. Temporal locality [3] –i) when elements are require again in

the near future.

ii) Arrange the code such way that element in cache is reused

often.

2. Special locality [3] – i) when other element in the block will

be needed soon.

ii) Cache line is fetched together.

iii) In the same cache line works on consecutive data elements.

When the processor find data item in the cache if it is available

in the cache then it is called a cache hit and if the data item is

not available in the cache then it is called cache miss. If we want

to reduce the miss rate then we should concentrate on both the

latency and bandwidth of the memory.

The detail of cache operation leads to different cache design

choices: Cache mapping techniques, Cache replacement policy

and Cache write techniques

Cache mapping techniques [5]: Three basic cache mapping

techniques –

In case of direct mapping each block in main memory has

particularly one and only one location in cache it can be copied

to. See figure 1 for an example. This technique is less costly as

no searching is required. However, if thrashing occurs, when

one cache block is continually swapped between two or more

memory blocks, the overhead becomes an issue.

Fully-associative mapping each memory blocks can be stored

anywhere in the cache. In this technique, the entire cache must

be searched for each memory access. This requires more

hardware and is thus very costly.

A combination of the two mapping concept, direct and fully-

associative, forms the most common mapping technique: set-

associative. Here, the cache block is divided into separate sets.

Every set is made up of two or more blocks. A two block set-

associative mapping is referred to as 2-way, because the data

retrieved from main memory can be put in two different

locations, instead of just one. This technique is flexible and

limits the amount of thrashing that could occur.

Fig.1. Direct Main Memory to Cache mapping

Fig.2. Associative Main Memory to Cache mapping

Note:

i) Direct Mapping ≡ 1way set associative.

ii) Fully Associative Mapping ≡ n way set associative.

Block Identification:

-Block address is used to identify the contents of a cache block

uniquely.

- Block size are changes according to different mapping

technique.

C

D

A

B

1

0

2

7

3

4

5

6

Cache

MM

A

a

A

B

C

D

0

1

2

3

4

5

6

7

MM

Cache

A

B

C

D

0

7

5

3

2

1

6

4

Cache
MM

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 80

Consider fig 4.

 Block Address Block

 offset Tag Index

Fig.4. Addressing Cache Block

Offset-Within block least significant bits of an address index

words.

Block address divided into two parts one is the Tag another is

the Index.

-Tag is used to identify each cache block uniquely.

-Index is used to particular slot set (set associative) or slot

(direct).

In case fully associative mapping technique index size-

Index Cache Size

2 =

 Block Size × Set Associativity

Writing to cache from the CPU presents another opportunity for

optimization. There are two simple write policies: write-through

and write-back [4][5]. During a typical write, the CPU stores its

computed data to a location in cache, which is stored back into

main memory. Write-through stores the data into the cache and

into the main memory at the same time. Write-back stores the

data in the cache, and only writes to main memory when

evicted.

1. ANALYSIS PROCEDURE

We must need mathematical equations to verify the

performance. This is very important in cache design.

Miss rates are a common metric of cache implementations

where miss rate is the ratio of misses to memory accesses. This

analysis is calculated by involving the times associated with

miss penalties and hit times. From [4], the average memory

access time (AMAT) in seconds or clock cycles can be found by

the following equation.

AMAT = Hit time + (Miss rate * Miss penalty)

Where hit time is the time it takes to get a memory location and

miss penalty is the time involved when the requested memory is

not found in the cache. Miss penalties take larger time than hit.

Via emulation and simulation software is the most common way

to test configurations before a complete physical

implementation. In [2], hardware prototyping and testing is

analyzed using a Xilinx Virtex-II Pro FPGA. Using an FPGA as

a test bed gives great reconfigurability. As stated in [6], random

program generators and simulation methods are used to test the

basic structures when combined. Upon implementation,

benchmarking software, such as SPEC CPU2006 [7], is used to

test the many aspects of a processor.

4. ARCHITECTURE

In 2006 Intel and AMD started multi-core processor to the user

and server markets. The AMD Athlon 64 FX dual-core

processor has two L1 caches, data and instruction, and one L2

cache, unified, for each core [8] (see Figure 5). Intel uses a

shared L2 cache in what is referred to as the Advanced Smart

Cache" [8] (see Figure 6).This implementation technique we

used to reducing the cache misses and increasing the

performance.

Fig.5: AMD Athlon 64 FX Architecture.

Another concept [9] proposes is non-uniform cache architecture

to share cache between cores dynamically. When one core uses

cache space unnecessarily and intrudes on another core's space

then cache pollution occurs in the architecture address. The

proposal is done with a quad-core processor and three levels of

cache. The third level, L3, is partly shared and partly private.

Each core is allotted a certain amount of space in L3 to be

private and cannot be intruded upon.

In [10], the idea of specializing is the cores for virtual machines.

They proposed two main designs: a single virtual machine core

shared by all other general-purpose and specialized cores (for

system virtualization); or each general purpose core can have a

virtual-machine-specific core (for process virtualization).

System security and dependability is addressed in [11] with an

integrated framework for dependable and revivable

architectures", or INDRA. INDRA uses a core set at a higher

privilege that is protected from remote attacks, a resurrection,

and monitors the execution of the other cores, the resurrectees.

Fig.6: Intel Core Duo Architecture.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 81

5. IMPLEMENTATION ISSUES

5.1 Addressing Constraints

In order to minimize effective memory access time, the access

should be triggered as soon as the effective address of the

memory reference becomes available. In most computers there

must be a delay in translation. This delay cannot be removed

completely.

5.1.1 Physical Address Cache

The caches are organized as 2-dimensional arrays and are

accessed in a two phase cycle. In the first phase, a cache set is

selected by using a portion of the address known as the index

bits. In the second phase, the remaining part of the address is

used to make a further selection from within this cache set to

yield either a cache miss determination or the requested data.

There are various techniques that exploit this two phase access

cycle to enable a physically addressed cache to be accessed

without requiring an extra address translation cycle. However,

there is a practical limit to this approach because increasing the

set-Associativity provides only a diminishing return on cache hit

ratio but adds hard-ware complexity and adversely impacts the

access time [12]. A technique that can be used to increase the

number of address bits available before address translation is to

restrict the virtual to physical page mapping so that the low-

order bits of the physical and virtual page numbers are identical

[14]. Another way to make more address bits available before

address translation is to predict the additional address bits. An

example of a good predictor is the content of the base register

that is used to compute the effective address [13].

5.1.2 Virtual Address Cache

Instead of using bits from the virtual address as a predictor for

the physical address, a different approach is to use the virtual

address to directly access the cache [15], [16]. This avoids the

delay for translation. In addition, all the addresses must be

tagged with an address space identifier or else the cache must be

purged on every task switch [16]. The most serious drawback of

the virtual address cache is that multiple virtual addresses may

be mapped to the same physical address, i.e. synonyms may

occur [16]. The usual approach to handling synonyms is to

prevent them from being present in the cache at the same time.

In general, a reverse translation buffer (RTB) is needed in order

for this approach to be feasible. One way to reduce the

complexity in handling synonyms is to make sure that the index

bits used to select the cache set are the same for both the

physical and virtual addresses.

5.2 Access Time and Miss Ratio Targets

The performance of a cache is determined both by the fraction

of memory requests it can satisfy (hit/miss ratio) and the speed

at which it can satisfy them (access time). There have been

numerous studies on cache hit/miss ratios with respect to the

cache and line sizes, and the set Associativity [16], [17].

5.2.1 Decoupled Caches

The data array access and line selection are carried out

independently of the tag array access and comparison so as to

circumvent the delay imbalance between the paths through the

tag and data arrays. This is trivially true in the direct-mapped

case because in such a cache, there is only one cache line in

each cache set. However, it tends to have an inferior hit ratio

due to conflict misses.

5.2.2 Multiple-Access Caches

A direct-mapped cache is accessed sequentially more than once

in order to achieve the access time of a direct-mapped cache for

the fast access and the hit ratio of a set-associative cache as a

whole. In [20], a simple rehashing function based on flipping

the highest-order index bit is used. Upon a hit to a secondary

location, the lines located in the primary and secondary

locations are swapped.

5.2.3 Multi-level Caches

A small and fast upstream cache is used for the fast access while

one or larger and slower downstream caches are used to capture

the fast- access misses with minimal penalties. The organization

and performance of multi-level caches have been studied

extensively [18].

5.3 Area and Bandwidth Constraints

In order to bridge the growing performance gap between

processor and memory, more and more silicon area is being

dedicated to the on-chip caches. For example, the Intel Pentium

Pro consists of a pair of 8KB on-die instruction and data L1

caches and an on-module 512KB L2 cache. Together these

caches occupy 65% of the total die area and account for 88% of

the total number of transistors. There are several approaches to

increasing cache bandwidth. A straightforward way is to have

separate instruction and data caches so that the instruction and

data references can be handled simultaneously. The trace cache

[19] alleviates this problem by storing the logically contiguous

instructions in a physically contiguous block in a separate cache.

6. USES OF MULTI-CORE PROCESSOR

6.1 Servers

Servers have very good use of multi-core processor. A server

can potentially have many simultaneous connections to many

users. To accept these connections, the server will either spawn

a new process or fork off a new thread. It makes the main

process to wait for a connection. The operating system can then

allocate these workloads across the available cores.

6.2 Consumers

The consumer market has adopted these new processors,

banking on the multi-tasking parallelism granted by the multiple

cores. These applications reap direct benefit from a multi-core

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 82

architecture by either multi-threaded programs or via scheduling

by the operating system. Multi-core processors are not limited to

traditional computers. Two such examples are the Cell

processor and NVIDIA Tesla GPU.

6.3 Virtualization

The idea of virtualization tracks back to the days of mainframes.

Now the costs are far lower. However, one thing remains to be

true: under-utilization. A system administrator can configure the

computer to virtualises" its devices, or operating system, to

allow one or more simultaneous virtual machine(s) to use the

computer as if each virtual machine (VM) was its own

computer.

7. CONCLUSIONS

Multi-core processors are already expanding their niche and are

finding many new and creative uses. Due to physical limitations

and increased multitasking requirements, the multi-core

architecture is expected to become the standard over the single-

core predecessors. Further caching schemes, both specialized

and general, will continue to be honed, narrowing the

performance gap between the processor and main memory.

Again During the past decade the performance of processors has

improved by almost 60% each year. Current trends in the

industry suggest that in the future, it may become economically

feasible to integrate a processor on the same die as the DRAM.

Such integration has the potential to reduce system cost and

improve both DRAM latency and available bandwidth. For

general purpose computing, cache memories will continue to

play a crucial role in bridging the processor-DRAM

performance gap.

REFERENCES

[1] D. Geer, “Industry Trends: Chip Makers Turn to Multi-

core Processors," Computer.org, IEEE, pp. 11-13, May

2005.

[2] C. R. Clark, R. Nathuji, H. S. Lee, “Using an FPGA as a

Prototyping Platform for Multi-core Processor

Applications", Georgia Institute of Technology, Atlanta,

GA.

[3] V. P. Heuring and H. F. Jordan, “Computer Systems

Design and Architecture”, Prentice Hall, 2nd Edition,

2003.

[4] J. L. Hennessy, D. A. Patterson, “Computer Architecture:

A Quantitative Approach”, Morgan Kaufmann

Publishers, 4th Edition, 2007.

[5] L. Null, J. Lobur, “Computer Organization and

Architecture”, Jones and Bartlett Publishers, 2003.

[6] D. Lewin, D. Lorenz, S. Ur, “A Methodology for

Processor Implementation Verification", Technion,

Haifa, Israel.

[7] J. L. Henning, SPEC CPU Subcommittee, “SPEC

CPU2006 Benchmark Descriptions", Standard

Performance Evaluation Corporation, 2006.

[8] Jeremy W. Langston and Xubin He, “Multi-core

Processors and Caching - A Survey”, Tennessee

Technological University, 2007.

[9] H. Dybdahl, P. Stenstrom, “An Adaptive Shared/Private

NUCA Cache Partitioning Scheme for Chip

Multiprocessors", HiPEAC Network of Excellence.

[10] D. Upton, K. Hazelwood, \Heterogeneous Chip

Multiprocessor Design for Virtual Machines", University

of Virginia.

[11] W. Shi, H. S. Lee, L. Falk, M. Ghosh, “An Integrated

Framework for Dependable and Revivable Architectures

Using Multicore Processors", Georgia Institute of

Technology, Atlanta, GA, 2006.

[12] M. Hill, A. Smith, “Evaluating Associativity in CPU

Caches," IEEE Trans. Computers, Vol. 22(12), Dec.

1989.

[13] K. Hua, et al., “Early Resolution of Address Translation

in Cache Design," Int'l Conf. Comp. Designs, pp. 408-

412, Oct. 1990.

[14] K. Inoue, H. Nonogaki, T. Urakawa, K. Shimizu, “Plural

virtual address space processing system," US Patent No.

4145738, March 20, 1979.

[15] F. Reiley, J. Richcreek, “Parallel Addressing of A

Storage Hierarchy in A Data Processing System Using

Virtual Address," US Patent No. 3693165, Sep. 19, 1972.

[16] A. Smith, “Cache Memories," Computing Surveys, Vol.

14(4), Sep.1982, pp. 473-530.

[17] A Smith, “Cache Memory Design: An Evolving Art,"

IEEE Spectrum, Dec. 1987, pp. 40-44.

[18] F. Sparacio, “Data Processing System with Second Level

Cache," IBM Tech. Disc., 21(6), Nov. 1978, pp. 2468-

2469..

[19] E. Rotenberg, S. Bennett, J. Smith, “Trace Cache: A

Low-Latency Approach to High-Bandwidth Instruction

Fetching," MICRO'29, Dec. 1996, pp. 24-34.

[20] A. Agarwal, J. Hennessy, M. Horowitz, “Cache

Performance of Operating Systems and

Multiprogramming," ACM Trans. Computer Systems,

Vol. 6(4), Nov. 1988, pp. 393-431.

