
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 45

CMP CACHE ARCHITECTURES - A SURVEY

Shirshendu Das
1

1
Department of Computer Science and Engineering, Indian Institute of Technology Guwahati

Abstract
As the number of cores on Chip Multi-Processor (CMP) increases, the need for effective utilization (management) of the cache

increases. Cache Management plays an important role in improving the performance and miss latency by reducing the number of

misses. In most of the cases, CMP with shared Last Level Cache (LLC) is a winner over the private LLC. Non-Uniform Cache Access

(NUCA) represent two emerging trends in computer architecture. In NUCA the LLC is divided into multiple banks which lead to

different banks being accessed with different latencies. Hence the heavily used blocks can be mapped or migrated towards the closer

bank of the requesting core. Though NUCA is the best architecture for single core systems, implementing NUCA in CMP has many

challenges. Researchers proposed many innovative ideas to implement NUCA in CMP but still there exists lot more complexities. Thus

CMP cache architecture is a widely open research area. In this paper we did a survey on different CMP cache architectures based on

NUCA. We have only given a basic overview and there are lot more advanced innovations which are not been covered. The

performance evaluation of CMP architecture is a challenging task and must have to do for proving the correctness of any proposed

architecture. Therefore, we also discussed about how the performance of CMP cache architectures can be evaluated

Keywords: Chip-Multiprocessor, NUCA, Last-Level-Cache, Formal Verification, Full-System simulator

--***---

1. INTRODUCTION

It is expected that Chip Multiprocessors (CMPs) that contain

multiple CPUs on the same die will be the main components

for building future computer systems [1]. In fact, several CMP

based architectures [2], [3], [4], [5] have already found their

way into commercial market. In the long run, it is expected that

the number of cores in CMPs will increase [6], [7]. Also the

CMP’s gradually accommodating large on-chip Last Level

Caches (LLC).

CMP cache architectures are mainly of two types i) CMP with

private LLC and ii) CMP with shared LLC. In both types of

architecture each core has their own L1 caches for

data/instructions. They differ in the physical placement of

LLC. Considering two level cache hierarchies each core in the

first type has its own private L2 cache while in second type

each core shares a common large L2 cache. Both types have

pros and cons. Private L2 caches are relatively small and

physically placed very near to the core, hence the cache access

time is very less. But it has the capacity problem; since the

cache size is small it causes several capacity misses. Multiple

copies of same data may present in separate L2 caches, hence

an L2 level coherence is compulsory. On the other hand shared

L2 is comparatively very large and only a single copy of each

data can store in it; the entire requesting core will share the

same data block. Another advantage of shared L2 is that the

cache storage can be dynamically allocated to a core depending

on its workload, which is not possible for private L2. Majority

of researchers found shared LLC (L2 in this case) as the best

choice for CMP cache architecture. But shared LLC also has a

disadvantage: due to its large size, cache access time is several

times longer than private LLC.

Researchers proposed many innovative ideas to minimize the

cache access time of shared LLC. Initially most of the CMP

cache structure is designed to have uniform cache access time

regardless of the block being accessed. For such Uniform

Cache Access (UCA) LLC, access time becomes a significant

bottleneck as the cache become larger. An alternative solution

is to divide the large cache into multiple banks such that each

bank can be accessed with different access time. This kind of

design is called Non Uniform Cache Access (NUCA) and is

the most promising CMP cache design in recent years.

Since different banks can be accessed at different access time a

core can access its closer bank much faster than the farther

banks. Hence heavily requested data blocks can be migrated

towards the closer banks to reduce the hit time. NUCA with

migration was first proposed by Huh et al. called D-NUCA. In

D-NUCA a data can be allocate to any bank in a set of banks.

But it requires searching the entire set to get the data. Hence,

searching time creates a problem in D-NUCA. Though a

solution for this problem (partial tag storage) exists for single

core processors there is no prominent solution for CMPs.

While D-NUCA is gradually being acknowledged as too

complex to implement, Chishti et al. considered an alternative

called NuRAPID that was higher-performing and potentially

less complex in a single-core setting. The main idea in this

design is to separate the tag and data arrays in the cache. For a

single core processor the tag array will be stored in the nearest

bank of the cache controller. The cache access begins with a

tag look-up and the request is then directly sent to the NUCA

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 46

bank that has the data. Such a design eliminates the need to

search for a block by progressively looking up multiple banks.

A block is now allowed to reside in any row in any cache bank

and the tag storage carries a pointer to the data blocks exact

location.

Shared LLC can be divided into two parts: Centralized and

Distributed. Centralized shared LLC means the LLC is placed

in a contiguous area on the chip and the cores are placed at the

two/four sides of the LLC. Both D-NUCA and NuRAPID are

based on centralized shared LLC. While distributed shared

LLC is almost like private LLC; each core has its own L1 and

L2 cache (together called Tile) and all the cores (Tiles) are

connected by some on-chip network. The difference of

distributed shared LLC and private LLC is that in distributed

shared LLC, each LLC (here L2) is shared by all the cores and

only a single copy of same data exists in the entire LLC.

In this paper, we have done a survey on the last level cache

(LLC) of different CMP architectures. The performance

improvement of LLC in CMP has several issues, e.g.,

migration, searching and coherence maintenance etc. In case of

single core architecture, such issues can be easily solved but

not for CMPs. We discussed about several CMP based cache

architectures proposed to solve the major CMP LLC issues.

Next section gives an overview of different types of CMP

cache architectures. Section 3 describes NUCA architecture in

details. Here we have explained the different types of NUCA

and the data management policy of each type of NUCA.

Implementation of CMP based NUCA architecture is discussed

in section 4. This section describes some notable contributions

in the area of CMP-NUCA. In section 5, we have discussed

about how to evaluate the performance of CMP cache

architectures. Section 6 concludes the paper.

2. AN OVERVIEW OF CMP CACHE DESIGN

Most modern high-performance processors have multiple

cache levels within a single chip. In a multi-core processor,

each core typically has its own private L1 cache (data and

instruction). Every processor must have to access L1 cache in

almost every cycle, sharing L1 cache with multiple cores is not

a good choice. Every miss in L1 cache is served by L2 cache.

If data is available in L2 then it is a hit and it immediately

sends a copy of the data to the requesting L1. Otherwise L2 has

to bring the data from the lower level memory first. For most

of the discussion in this paper, we will assume that the L2 is

the LLC.

2.1 Shared Last Level Cache

Shared LLC means a single large cache shared by multiple

cores on the chip. Each core in the CMP is connected to the

shared LLC through an interconnect. The interconnect may be

either a bus, switch based interconnect or a hybrid type of

interconnect. We are not going to discuss about the on-chip

interconnects in this paper. Interested reader can see [8], [9] for

details. One example organization for CMP with shared LLC is

shown in Figure 1(a). In shared LLC there is no duplication of

cache blocks but the same cache block can reside in multiple

L1 cache simultaneously. Coherence must be maintained

among the L1s and the L2.

The main advantage of using a shared cache is the available

storage space that can be dynamically allocated among

multiple cores, leading to better utilization of the overall cache

space. Also it requires maintaining only a single copy of shared

data. The primary disadvantages of a shared cache is that the

working sets of different cores may interfere with each other

and impact each other’s miss rates, possibly leading to poorer

quality-of-service. This may impose overheads if the cores are

mostly dealing with data that is not shared by multiple cores.

Also, a core may experience many contention cycles when

attempting to access a resource shared by multiple cores.

However, we will show in this paper that both of these

disadvantages can be easily alleviated.

2.2 Private Last Level Cache

A popular alternative to the single shared LLC is a collection

of private LLC. Assuming a two-level hierarchy, a core is now

associated with private L1 instruction and data caches and a

private unified L2 cache (see Figure 1(b)). A miss in L1

triggers a look-up of the cores private L2 cache. Each private

L2 cache is relatively small, allowing smaller access times on

average for L2 hits. The private L2 cache can be accessed

without navigating the coherence interface and without

competition for a shared resource, leading to performance

benefits for threads that primarily deal with non-shared data.

A primary disadvantage of private L2 caches is that a data

block shared by multiple threads will be replicated in each

threads private L2 cache. This replication of data blocks leads

to a problem called capacity problem. Another disadvantage of

a private L2 cache organization is the static allocation of L2

cache space among cores. By employing private L2 caches, the

coherence interface is pushed down to a lower level of the

cache hierarchy. But due to the large size of LLC, maintaining

coherence in this level is a complex job.

2.3 Shared vs. Private LLC

Both Shared LLC and Private LLC have some advantages and

some disadvantages. The advantages of one are the

disadvantages of another. Hence, recently researchers are

proposing hybrid alternatives for combining the advantages of

both shared and private LLC [10], [11], [12], [13].

2.4 Inclusive Cache Behavior

For much of the discussions in this paper, we will assume

inclusive cache hierarchies. However, many research

evaluations and commercial processors employ non-inclusive

hierarchies as well. If the L1-L2 hierarchy is inclusive, it

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 47

means that every block in L1 has a back-up copy in L2. The

following policy ensures inclusion: when a block is evicted

from L2, its copy in the L1 cache is also evicted. If a single L2

cache is shared by multiple L1 caches, the copies in all L1s are

evicted. This is an operation very similar to L1 block

invalidations in a cache coherence protocol.

2.5 CMP with Shared LLC

CMP having shared LLC can be categorized into two different

ways:

 Centralized Shared LLC.

 Distributed Shared LLC.

In most of the shared caches, LLC is considered as centralized

entity and is placed in a contiguous area into the chip. All the

cores are placed on the two/four sides of the LLC. One

example of such centralized shared L2 cache is shown in figure

2(a). Even though the cache is partitioned into multiple banks

and the cache controller is distributed over all the banks we

still call it as centralized because it occupies contiguous space

into the chip.

This type of centralized architecture is good enough for CMP’s

with small number of cores but when there are many number

of cores, this type of architectures degrade performance [8],

[14]. Researchers have proposed an alternative with distributed

shared LLC [8]. In this model even though the cache is

logically shared it may be physically distributed over the chip,

such that one bank of the L2 may be placed in close proximity

to each core. The core, its L1 caches, and one bank of the LLC

together constitute one Tile. A switch based mashed network is

used (most of the cases) to connect all the Tiles. Other types of

networks can also be used as an interconnect (e.g., bus or

hybrid). One example of such a physical layout is shown in

Figure 2(b). The primary disadvantage of this organization is

the higher cost in moving data/requests between L2 cache

banks and the next level of the memory hierarchy.

3. NON-UNIFORM CACHE ACCESS (NUCA)

In past most of the CMPs cache structure is designed to have

uniform cache access time regardless of the block being

accessed. Such Uniform Cache Access (UCA) architectures

certainly simplify the cache access policies. However, as cache

become larger and also partitioned into multiple banks,

maintaining uniform accesses time for the entire cache is not a

good choice. The banks nearer to a core can actually be

accessed much faster than the furthest bank. Also wire delay

plays an increasingly significant role in cache design [11].

Increasing wire delay makes it difficult to provide uniform

access latencies to all L2 cache banks. One alternative is

NUCA designs [10], which allow nearer cache banks to have

lower access latencies than further banks. NUCA architecture

was initially proposed for uniprocessor systems. They consider

a large L2 cache that has a single cache controller feeding one

processor core (see Figure 3). The author proposed three types

of NUCA architecture a) SNUCA-1 (Static NUCA-1) b)

SNUCA-2 (Static NUCA-2) and c) D-NUCA (Dynamic

NUCA). In all the three types, large L2 cache is divided into

multiple banks and all the banks are connected between them

and also with the cache controller. The difference between the

types is based on the interconnect topology, number of banks

and the data management policy. A detail discussion on each

types of NUCA is given in next section (Section 3.1).

Data management policies of NUCA must follow the following

three issues:

Mapping: The possible locations for a data block. The

simplest policy is to statically map each block to a particular

bank. An alternative mapping policy distributes ways and sets

across banks such that a block can reside in any bank from a

set of banks. A search mechanism is required to locate a block

that may be in one of a set of banks.

Search: the mechanisms required to locate a data block. The

search of a block can happen in an

Fig 1: Example of Chip Multi Processor (a) with L2 as shared

LLC (b) with L2 as private LLC.

Fig 2: Example of Chip Multi Processor (a) with Centralized

Shared LLC (b) with distributed shared LLC

Incremental manner, i.e., one bank after another bank.

Alternatively, a multicast search operation can be carried out

where the request is sent to all banks simultaneously. The

second approach will yield higher performance but also higher

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 48

power. They also propose a Smart Search mechanism where a

partial tag (six bits) for each block is stored at the cache

controller. A look-up of this partial tag structure helps identify

a small subset of banks that likely have the requested data and

only those banks must now be searched.

Movement: the mechanisms required to change a block’s

location. The authors allowed frequently accessed blocks to be

migrated from the farther banks to the closer banks.

3.1 Different of NUCA-Types

In this section we have given a brief description of all three

types of NUCA implementation.

SNUCA-1: An example of such type of NUCA is given in

Figure 3(a). Here each bank has a dedicated two-way

transmission channel connected to the cache controller. The

mapping of data into banks is predetermined, based on the

block index, and thus can reside in only one bank of the cache.

SNUCA-2: Private per-bank channels used in SNUCA-1

heavily restricts the number of banks that can be implemented,

since the per-bank channel wires adds significant area

overhead to the cache if the number of banks is large. To

overcome that limitation, the author proposed a static NUCA

design that uses a two-dimensional switched network. This

organization, called SNUCA-2, is shown in Figure 3(b).

Fig 3: An example showing different types of NUCA.

D-NUCA: Even with an aggressive multi-banked design,

performance may still be improved by exploiting the fact that

accessing closer banks is faster than accessing farther banks.

By permitting data to be mapped to many banks within the

cache, and to migrate among them, a cache can be

automatically managed in such a way that most requests are

serviced by the fastest banks. Using the switched network, data

can be gradually promoted to faster banks as they are

frequently used. This promotion is enabled by spreading sets

across multiple banks, where each bank forms one way of a

set. Thus, cache lines in closer ways can be accessed faster

than lines in farther ways. To fulfill this dynamic behavior the

author proposed D-NUCA or Dynamic-NUCA. An example of

D-NUCA is shown in Figure 3(c).

4. IMPLEMENTING NUCA FOR CMPs

CMPs are accommodating many mega-bytes of data in their

LLC. As we already discussed, LLC can be shared by many

cores and can be either physically distributed or contiguous on

the chip. We next discuss about the several architectural

innovations that attempt to cleverly place data blocks within

LLC to optimize metrics such as miss rates, access times,

quality-of-service and throughput. There are many complexity

to implement NUCA for CMP LLC. In this section we will

discuss the different complexities of implementing NUCA for

CMPs and also several innovations to solve all these

complexities.

4.1 Complexities with D-NUCA for CMP

D-NUCA outperforms the other two types of NUCA in case of

single core processor [10]. There are already some notable

contributions to implement D-NUCA for CMP’s. However, all

of this work had to suffer from the overheads of a fairly

complex search mechanism, a problem that to date does not

have a compelling solution.

Beckmann and Wood:

Beckmann and Wood [11] proposed the first detailed multi-

core NUCA architecture. They assume a layout (see Figure

4(a)) where the shared NUCA cache resides in the middle of

the chip and is surrounded by eight cores. A major contribution

of this work is the classification of banks into regions and

architectural policies to allow a block to migrate to a region

that minimizes overall access times. There are 16 regions, out

of them 8 are called local region (one for each core), 4 are

called center region and remaining 4 are called inter regions.

Initial placement is somewhat random (based on the block tag

bits). From here, a block is allowed to gradually migrate to

different regions based on the cores that access it. The basic

rule for migration is as follows:

other-local => other-inter => other-center => my-center =>

my-inter => my-local

The authors also find out that in most of the workloads the

amount of shared data is less but the frequency of accessing

those datum is very high. Hence due to the above mentioned

migration rule, eventually most of the shared data will saturate

into the center regions, which are far away from every cores.

Normal RC based wires used as D-NUCA interconnect are

slow [15] and cannot access those center regions rapidly.

Hence to reduce the access latency the authors used high speed

transmission lines [15] to connect directly each core to the

center regions (see Figure 4(b)). Note that transmission lines

can communicate data at the near speed of light. The details

regarding transmission lines are discussed in [9].

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 49

Fig 4: NUCA for CMP, proposed in [11] (image also taken

from [11]).

Figure 1: An example showing different types of NUCA.

The most significant problem with the above architecture is the

difficulty in locating a block. In a D-NUCA that distributes the

ways across the banks, it cannot be statically determined the

exactly location of a block. That means for every request it

needs to search a set of banks to get the block (assume if it is a

hit). Beckmann and Wood employ a multicast based search

mechanism.

Huh et al.

In a paper that appeared shortly after [11], Huh et al. [16]

validate many of the above observations. They used a 16-core

CMP with a large banked NUCA cache in the middle of the

chip. As we have mentioned in section 2.5 that such type of

CMPs are called CMP with centralized shared LLC. The

authors confirm that an SNUCA policy leads to longer access

times on average. There is a minor performance improvement

in case of D-NUCA based policy, where the ways are

distributed across the banks and blocks are allowed to migrate

between banks. They consider both 1-dimensional and 2-

dimensional block movement where 1-D movement prevents a

block from moving out of its designated column. They found

that the main reason for less performance improvement in case

of D-NUCA (for CMPs) is the complexity of searching the

blocks. To avoid having to access numerous banks, they

implement a distributed set of replicated partial tags. At the

top/bottom of every column of banks, partial tags for every

block in that column are stored. A look-up into this storage

reveals if one or more banks in that column can possibly have

the requested block. These additional look-ups of partial tags

and banks (nearly 50% more than the S-NUCA case) negate

half the benefit afforded by D-NUCA data proximity. They

also result in increased power and bank access rates. The

various tag stores will have to be updated with on-chip

messages every time a block is replaced / migrated.

4.2 Some Other Implementations of NUCA

Re-NUCA: Re-NUCA [17] is a novel cache architecture that

allows limited replication for shared blocks accessed by

processors placed at opposite chip sides. In particular, their

solution lets at most two independent copies of the same block

to be stored in the same shared cache, each of them migrating

towards the closest cache side, named target side.

HK-NUCA: A data search algorithm for D-NUCA, which is

called HK-NUCA has been proposed in [18]. HK-NUCA

means Home Knows where to find data within the NUCA

cache. They considered that each block must have a home bank

in the NUCA, though it can be reside or migrate to any other

bank the home bank will always maintain a pointer called (HK-

PTR) to for the data.

4.3 NuRAPID and CMP-NuRAPID

Due to its searching issues D-NUCA is gradually being

acknowledged as "too complex to implement". To solve this

problem, Christi et al. [12] proposed an alternative architecture

called NuRAPID. It is less complicated and also performing

better than D-NUCA for single core systems. The authors

initially proposed it only for single core multi-banked cache

architectures. Later they extended the concept and proposed

NuRAPID for multiple cores [13] (called CMP-NuRAPID).

Two key contributions were made in the first paper:

 Instead of placing both tag and data blocks together,

they propose to implement the entire tag array as a

centralized structure near the processing core/cache

controller. Every cache access starts with a tag look-

up and the request is then directly sent to the NUCA

bank that has the data. Such a design eliminates the

need to search for a block by progressively looking up

multiple banks. However, the movement of every

block must need to inform the centralized cache

controller so that the tag can be updated.

 Separating tag and data block placement. In

NuRAPID a block can be stored in any row in any

cache bank and the tag storage (organized in a

conventional manner) carries a pointer to the data

block’s exact location. Similar to D-NUCA, the

requesting blocks are gradually migrated towards the

cache controller. Swapping places with any block that

may not have been recently touched.

Since a swap can now happen between any two blocks, the

block movement policy allows the closest banks to

accommodate the ―globally hottest‖ (most frequently and

recently touched) blocks, and not just the hottest blocks in each

set. Note that conventional D-NUCA would restrict each set to

only place a small subset of ways close to the CPU, whereas

NuRAPID policy allows all the ways of a hot set to be placed

in a nearby bank. Such flexibility can allow NuRAPID to out-

perform D-NUCA, especially if applications non-uniformly

stress their sets. It can also reduce inter-bank traffic, especially

if banks are sufficiently large. The overhead in providing such

flexibility is that data blocks need to store reverse pointers that

identify their entry in the tag array, so that the corresponding

tag can be updated when a swap happens.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 50

CMP-NuRAPID: In a follow-on paper [13], Chishti et al.

extend their scheme to handle multiple cores. Just as in the

NuRAPID [12] design, the CMP-NuRAPID design also

decouples data and tag arrays. The data array is a shared

resource; any core can place its data in any row of the data

array; the data array is organized as multiple banks with non-

uniform access times. Each core maintains a private tag array,

with entries capable of pointing to any row of the shared data

array. Keeping the tag arrays coherent is tricky: the authors

assume that the tag arrays are kept coherent upon

misses/movements/replacements by broadcasting changes to

all tag arrays. The CMP-NuRAPID design is therefore an

interesting hybrid between private and shared L2 caches. It has

much of the performance potential of a shared cache, plus it

allows selective replication of read-only blocks.

4.4 CMP with Distributed Shared Cache

All the above NUCA architectures are based on centralized

shared cache. Since centralized cache has scalability issues,

researchers also proposed many NUCA architectures for

distributed shared cache. In this paper we call them as Tile

Based Architecture (TLA).

Hardavellas et al. [19] put forth a novel Tile based NUCA

architecture that relies on OS management of pages in a large

shared L2 cache and does not require complex search

mechanism. Each core is also allowed its own indexing

functions, enabling each core to have a different view of the

shared L2 cache this allows a private page to migrate between

banks without requiring page copy in DRAM or complex

hardware structures. In addition to efficiently handling both

shared and private pages, it facilitates replication at various

granularities.

In [20] the authors have combined on-chip networks and 3D

architectures for designing large L2 cache memories for Tile

based CMP. Specifically, this paper has proposed a hybrid

bus/NoC (Network on Chip) fabric to efficiently exploit the

fast vertical interconnects in 3D circuits, discussed processor

placement and L2 data management issues, and presented an

extensive experimental evaluation of the proposed architecture

as well as its comparison to 2D L2 cache designs.

Some innovations also exists for implementing hybrid

architectures by combining private LLC concepts and the

distributed shared LLC concepts [21], [22], [23], [24],

[25],[26].

4.5 Summary of this Section

The architectures discussed in this section are the basic NUCA

based CMP architectures. There are lot more advanced works

have already been proposed and it is not possible to cover all of

them in this paper. Few of these works are based on 3D

architecture, wiring technologies, data prefetching / replication

/ spilling, NoC (Network on Chip) routing technologies and

power management etc. Also a large number of researches are

still working on multiple banked CMP cache architectures.

5. SIMULATION AND VERIFICATION

A major issue to work on CMP architecture is to implement

our proposed architectures. To propose or modify any

architecture (may or may not be CMP cache architecture), we

have to prove that our architecture is working correctly and

also performing better than other existing architectures of same

category. It is not always possible to do hardware

implementation of CMP cache architectures because it takes

lots of time and money. Therefore, hardware implementation is

not preferred by most of the research institutes and

organizations. There are two alternatives that the researchers

can do to prove the correctness of their proposed architecture.

 Formal Verification.

 Simulation.

5.1 Formal Verification

In the context of hardware and software systems, formal

verification is the act of proving or disproving the correctness

of intended algorithms underlying a system with respect to a

certain formal specification or property, using formal methods

of mathematics. Formal verification can be helpful in proving

the correctness of systems such as: combinational circuits,

digital circuits with internal memory, and software expressed

as source code. The detail explanation is outside the scope of

this paper. In short we can say that it is a process to formally

prove the correctness of our model. The concept of formal

verification can be used for proving the correctness of any

architectural model (e.g., NoC, SoC and CMP). In this process,

we have to model our architecture in a particular process

algebraic language like CCS [27], CSP [28], PROMELA [29]

etc. and prove the correctness of the model by verifying all the

properties of the architecture. The properties are normally

written in temporal logic (e.g., LTL, CTL) [30]. Formal

verification has been used to model many SoC (System on

Chip) and NoC based architectures [31], [32], [33]. In [34] the

author used MurΦ [35], a formal verification language, to

prove the correctness of their tree based cache coherence

protocol for CMPs.

5.2 Simulation

The most popular way to implement any cache architectures is

to simulate the architecture with a simulator. For simulating

any CMP cache we need two types of simulator (a) Cache

Modeler (b) Full System simulator.

Cache Modeler: Cache modeler means a software tool that

can model optimized cache architecture. A most widely used

cache modeler is CACTI [36]. CACTI first invented in 1994

[37] and has been cited by more than thousand papers. CACTI

takes input parameters like cache block size, cache size,

associativity, number of cores and number of banks (for

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 51

NUCA) and calculate an optimized cache model. Here

optimized model means cache with optimized delay, area and

power. Each optimization parameters are further subdivided

into many parameters (e.g., number of sub-arrays, wire delay,

tag array overhead, data array overhead etc.). The complete

discussion of CACTI is not possible here. Interested person can

read the technical report of CACTI 6.0 [38]. CACTI tool is

freely available in [39].

Full system simulator: A full-system simulator is a Computer

architecture simulator that simulates an electronic system at

such a level of detail that complete software stacks from real

systems can run on the simulator without any modification. A

full system simulator effectively provides virtual hardware that

is independent of the nature of the host computer. The full-

system model typically has to include processor cores,

peripheral devices, memories, interconnection buses and

network connections. CMP cache architecture must have to use

full-system simulator for complete performance evaluation.

Most of the simulators are written in C/C++ and sometimes

need to change some functionality to meet our requirements.

The two most widely used full-system simulators are (a)

Simics [40] and (b) Gem5 [41]. Simics is a function driven

commercial simulator and initially has no support for time

driven simulation. But the problem has been solved by GEMS

[42] which is a time driven simulator works on top of Simics.

GEMS can be used for simulating any memory architecture

(cache, main memory). It can also simulate network and power

consumption of a CMP architecture using two additional tools

called Garnet [43] and Orion [44] respectively. GEMS is a

freely distributable tool but it is dependent on Simics and

cannot work independently. The combination of Simics and

GEMS is the most popular full-system simulator from last one

decade. The gem5 simulation infrastructure is the merger of the

best aspects of the M5 [45] and GEMS [42] simulators. Gem5

is freely available [46] and independent from Simics.

Why two types of simulators: A common question may arise to

any reader as why we need two types of simulators (Cache

Modeler and Full-system) and what is the relation between

them. In short, the answer would be; cache modeler calculates

the best possible model for a cache architecture with optimized

delay, area and power parameters. Full-system simulator can

use those optimal parameters (especially cache access time,

wire delay etc.) to make a more realistic and accurate system.

6. CONCLUSIONS

NUCA architecture is a clear winner over the UCA

architectures. But implementing NUCA for CMPs has several

issues. Researchers found that the migration based NUCA

models of CMP are not as efficient as compared to the single

core NUCA. The main problem is searching of a block within

the cache banks. Many ideas have already been proposed to

mitigate all these problems but till it is an open research area to

find out an optimal NUCA implementation for CMPs. In this

paper we have done a survey on different CMP cache

architectures based on NUCA. We only gave a basic overview

and there are lot more advanced innovations which are not

covered. The performance evaluation of CMP architecture is a

challenging task and must have to do for proving the

correctness of any proposed architecture. Therefore, we also

discussed about how the performance of CMP cache

architectures can be evaluated.

REFERENCES

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson,

and K. Chang, ―The case for a single-chip

multiprocessor,‖ SIGPLAN Not., vol. 31, pp. 2–11,

September 1996.

[2] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T.

R. Maeurer, and D. Shippy, ―Introduction to the cell

multiprocessor,‖ IBM J. Res. Dev., vol. 49, pp. 589–

604, July 2005.

[3] P. Kongetira, K. Aingaran, and K. Olukotun, ―Niagara:

A 32-way multithreaded sparc processor,‖ IEEE Micro,

vol. 25, pp. 21–29, March 2005.

[4] Amd athlon 64 x2 dual-core processor for desktop.

[Online]. Available:

http://www.amd.com/usen/Processors/ProductInformati

on/0,,30 118 9485 13041,00.html

[5] (2008, April) Intel. Quad-core intel xeon processor

5400 series. [Online]. Available:

http://download.intel.com/design/xeon/datashts/318589.

pdf

[6] Intel teraflops machine. [Online]. Available:

http://www.intel.com/idf/

[7] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S.

Borkar, ―A 5-ghz mesh interconnect for a tera?ops

processor,‖ IEEE Micro, vol. 27, pp. 51–61, September

2007.

[8] R. Balasubramonian, N. P. Jouppi, and N.

Muralimanohar, Multi-Core Cache Hierarchies. Morgan

Claypool Publishers, 2011.

[9] B. M. Beckmann and D. A. Wood, ―TLC: Transmission

line caches,‖ in Proceedings of the 36th annual

IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO 36, 2003, pp. 43–.

[10] C. Kim, D. Burger, and S. W. Keckler, ―An adaptive,

non-uniform cache structure for wire-delay dominated

on-chip caches,‖ SIGOPS Oper. Syst. Rev., vol. 36, pp.

211–222, October 2002.

[11] B. M. Beckmann and D. A. Wood, ―Managing wire

delay in large chip-multiprocessor caches,‖ in

Proceedings of the 37th annual IEEE/ACM

International Symposium on Microarchitecture, ser.

MICRO 37. IEEE Computer Society, 2004, pp. 319–

330.

[12] Z. Chishti, M. D. Powell, and T. N. Vijaykumar,

―Distance associativity for high-performance energy-

http://www.amd.com/usen/Processors/ProductInformation/0,,30%20118%209485%2013041,00.html
http://www.amd.com/usen/Processors/ProductInformation/0,,30%20118%209485%2013041,00.html
http://download.intel.com/design/xeon/datashts/318589.pdf
http://download.intel.com/design/xeon/datashts/318589.pdf
http://www.intel.com/idf/

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 52

efficient non-uniform cache architectures,‖ in

Proceedings of the 36th annual IEEE/ACM

International Symposium on Microarchitecture, ser.

MICRO 36. IEEE Computer Society, 2003, pp. 55–.

[13] ——, ―Optimizing replication, communication, and

capacity allocation in cmps,‖ SIGARCH Comput.

Archit. News, vol. 33, pp. 357–368, May 2005.

[14] L. Hao, L. Tao, L. Guanghui, and X. Lunguo, ―Private

cache partitioning: A method to reduce the off-chip

missrate of concurrently executing applications in chip-

multiprocessors,‖ in Computer Research and

Development (ICCRD), 2011 3rd International

Conference on, vol. 4, march 2011, pp. 254 –259.

[15] R. Chang, N. Talwalkar, C. Yue, and S. Wong, ―Near

speed-of-light signaling over on-chip electrical

interconnects,‖ Solid-State Circuits, IEEE Journal of,

vol. 38, no. 5, pp. 834 – 838, may 2003.

[16] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S.

W. Keckler, ―A nuca substrate for flexible cmp cache

sharing,‖ in Proceedings of the 19th annual international

conference on Supercomputing, ser. ICS ’05, 2005, pp.

31–40.

[17] P. Foglia, C. A. Prete, M. Solinas, and G. Monni, ―Re-

nuca: Boosting cmp performance through block

replication,‖ in Proceedings of the 2010 13th Euromicro

Conference on Digital System Design: Architectures,

Methods and Tools, ser. DSD ’10, 2010, pp. 199–206.

[18] J. Lira, C. Molina, and A. Gonzalez, ―HK-nuca:

Boosting data searches in dynamic non-uniform cache

architectures for chip multiprocessors,‖ in Parallel

Distributed Processing Symposium (IPDPS), 2011

IEEE International, may 2011, pp. 419 –430.

[19] N. Hardavellas, M. Ferdman, B. Falsafi, and A.

Ailamaki, ―Reactive nuca: near-optimal block

placement and replication in distributed caches,‖

SIGARCH Comput. Archit. News, vol. 37, pp. 184–

195, June 2009.

[20] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V.

Narayanan, and M. Kandemir, ―Design and

management of 3d chip multiprocessors using network-

in-memory,‖ SIGARCH Comput. Archit. News, vol. 34,

pp. 130–141, May 2006.

[21] B. M. Beckmann, M. R. Marty, and D. A. Wood, ―Asr:

Adaptive selective replication for cmp caches,‖ in

Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture, ser.

MICRO 39. IEEE Computer Society, 2006, pp. 443–

454.

[22] J. Chang and G. S. Sohi, ―Cooperative caching for chip

multiprocessors,‖ in Proceedings of the 33rd annual

international symposium on Computer Architecture, ser.

ISCA ’06, 2006, pp. 264–276.

[23] M. K. Qureshi, ―Adaptive spill-receive for robust high-

performance caching in cmps,‖ in Proceedings of

HPCA, 2009.

[24] H. Lee, S. Cho, and B. Childers, ―Cloudcache:

Expanding and shrinking private caches,‖ in

Proceedings of HPCA, 2011.

[25] H. K. Kapoor, L. Chatterjee, and R. Yarlagadda,

―Clustered caching for improving performance and

energy requirements in noc based multiprocessors,‖ in

Proceedings of the International Conference on

Computer Design (CDES), 2011.

[26] R. Yarlagadda, S. R. Kuppannagari, and H. K. Kapoor,

―Performance improvement by n-chance clustered

caching in noc based chip multi-processors,‖ in

Proceedings of the International Conference on

Computer Design (CDES), 2011.

[27] R. Milner, Communication and concurrency. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[28] C. A. R. Hoare, ―Communicating sequential processes,‖

Commun. ACM, vol. 21, no. 8, pp. 666–677, 1978.

[29] Promela manual. [Online]. Available:

http://spinroot.com/spin/Man/promela.html

[30] M. Huth and M. Ryan, Logic in Computer Science

modelling and reasoning about systems. Cambridge

University Press, 2004.

[31] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-

Vincentelli, ―Theory of Latency-Insensitive Design,‖

IEEE Transactions on Computer Aided Design of

Intregrated Circuits and Systems, vol. 20, no. 9, pp.

1059–1076, Sep 2001.

[32] H. K. Kapoor, ―A Process Algebra View of Latency

Insensitive System,‖ IEEE Transactions on Computers,

vol. 58, no. 7, pp. 931–944, July 2009.

[33] S. Das, P. S. Duggirala, and H. K. Kapoor, ―A formal

framework for interfacing mixed-timing systems,‖

Integration, the VLSI Journal, no. 0, pp. –, 2012.

[Online]. Available:

[34] http://www.sciencedirect.com/science/article/pii/S0167

926012000363

[35] H. Kapoor, P. Kanakala, M. Verma, and S. Das,

―Design and formal verification of a hierarchical cache

coherence protocol for noc based multiprocessors,‖ The

Journal of Supercomputing, pp. 1–26, 2013. [Online].

Available: http://dx.doi.org/10.1007/s11227-012-0865-8

[36] U. Stern and D. L. Dill, ―Automatic verification of the

SCI cache coherence protocol,‖ Correct Hardware

Design and Verification Methods, LNCS, vol. 987, pp.

21–34, 1995.

[37] N. Muralimanohar, R. Balasubramonian, and N. Jouppi,

―Optimizing nuca organizations and wiring alternatives

for large caches with cacti 6.0,‖ in Proceedings of the

40th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO 40, 2007, pp. 3–14.

[38] S. Wilton and N. Jouppi, ―Cacti: an enhanced cache

access and cycle time model,‖ Solid-State Circuits,

IEEE Journal of, vol. 31, no. 5, pp. 677 –688, may

1996.

[39] N. Muralimanohar, R. Balasubramonian, and N. P.

Jouppi, ―CACTI 6.0: A Tool to Model Large Caches,‖

HP Laboratories, Tech. Rep., April 2009. [Online].

http://spinroot.com/spin/Man/promela.html
http://www.sciencedirect.com/science/article/pii/S0167926012000363
http://www.sciencedirect.com/science/article/pii/S0167926012000363
http://dx.doi.org/10.1007/s11227-012-0865-8

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

__

Volume: 02 Special Issue: 02 | Dec-2013, Available @ http://www.ijret.org 53

Available:

http://www.hpl.hp.com/techreports/2009/HPL-2009-

85.html

[40] Cacti. [Online]. Available:

http://www.hpl.hp.com/research/cacti/

[41] P. S. Magnusson, M. Christensson, J. Eskilson, D.

Forsgren, G. Hållberg, J. Högberg, F. Larsson, A.

Moestedt, and B. Werner, ―Simics: A full system

simulation platform,‖ Computer, vol. 35, no. 2, pp. 50–

58, Feb. 2002.

[42] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A.

Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S.

Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M.

D. Hill, and D. A. Wood, ―The gem5 simulator,‖

SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–

7, Aug. 2011.

[43] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.

Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.

Hill, and D. A. Wood, ―Multifacet’s general execution-

driven multiprocessor simulator (gems) toolset,‖

SIGARCH Comput. Archit. News, vol. 33, no. 4,

pp.92–99, Nov. 2005.

[44] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha, ―Garnet:

A detailed on-chip network model inside a full-system

simulator,‖ in Performance Analysis of Systems and

Software, 2009. ISPASS 2009. IEEE International

Symposium on, april 2009, pp. 33 –42.

[45] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, ―Orion: a

power-performance simulator for interconnection

networks,‖ in Microarchitecture, 2002. (MICRO-35).

Proceedings. 35th Annual IEEE/ACM International

Symposium on, 2002, pp. 294 – 305.

[46] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and

S. Reinhardt, ―The m5 simulator: Modeling networked

systems,‖ Micro, IEEE, vol. 26, no. 4, pp. 52 –60, july-

aug. 2006.

[47] The gem5 simulator system. [Online]. Available:

http://www.m5sim.org

http://www.hpl.hp.com/techreports/2009/HPL-2009-85.html
http://www.hpl.hp.com/techreports/2009/HPL-2009-85.html
http://www.hpl.hp.com/research/cacti/
http://www.m5sim.org/

